CS3691 EMBEDDED SYSTEMS AND IOT LTPC

3024
COURSE OBJECTIVES:
i To learn the internal architecture and programming of an embedded processor.
i To introduce interfacing 1/0 devices to the processor.
i To introduce the evolution of the Internet of Things (loT).
i To build a small low-cost embedded and 10T system using Arduino/RaspberryPi/ openplatform.
i To apply the concept of Internet of Things in real world scenario.

UNIT I 8-BIT EMBEDDED PROCESSOR Bit
Microcontroller — Architecture — Instruction Set and Programming — Progka Parallel Ports
— Timers and Serial Port — Interrupt Handling.

UNIT Il EMBEDDED C PROGRAMMING
Memory And 1/0O Devices Interfacing — Programming Embedded Systems in C — Need For
RTOS — Multiple Tasks and Processes — Context Switching % Priority Based Scheduling

Policies. /

UNIT 111 IOT AND ARDUINO PROG
Introduction to the Concept of 10T Devie€S—=oT icesiVersus

Computers — 10T Configurations — Basic Compon — Introduction to Arduino — Types of
Arduino— Arduino Toolchain —

UNIT IV IOT COMM ND OPEN PLATFORMS
loT Communication Mo Is — 1oT Communication Protocols — Bluetooth — WiFi —
ZigBee—- GP s — Open Platform (like Raspberry Pi) — Architecture —

Accessing GPIO Pins — Sending and Receiving Signals Using GP1O
Pins -C oud.

UNIT V ARPLICATIONS DEVELOPMENT

Complete ign of Embedded Systems — Development of IoT Applications — Home
Automation ~Smart Agriculture — Smart Cities — Smart Healthcare.

1|Page

UNIT |

8-BIT EMBEDDED PROCESSO®
8-Bit Microcontroller \(\(
Architecture y 4
Instruction Set and P, ing
Programming Parallel Ports

Timers and Sen

Interrupt H

2|Page

1.1. 8051 Microcontroller

8051 microcontroller is an 8-bit microcontroller created in 1981 by Intel Corporation. It has an 8-
bit processor that simply means that it operates on 8-bit data at a time. It is among the most
popular and commonly used microcontroller.

As it is an 8-bit microcontroller thus has 8-bit data bus, 16-bit address bus. Along with that, it
holds 4 KB ROM with 128 bytes RAM.

1.1.1. What a Microcontroller is?
A microcontroller is an integrated chip designed under Very Large Scale Integratign technique
that consists of a processor with other peripheral units like memory, 1/0 i decoder,
ADC etc. A microcontroller is basically designed in such a way that all i
are embedded in a single chip with the processor.

timer within it. But a
ip. This single-chip

Any programmable device holds a processor, memory, 1/O ports a
microcontroller contains all these components embedde a single
manages the overall operation of the device.

A microprocessor simply contains a CPU that processes the operatiens with the help of other
peripheral units. Microprocessors are used w, huge ﬁce IS present to inbuilt a large
motherboard like in PCs.

1.2. Architecture of 8051 MicrgC€ontroller
The figure below represents the architéctural block diagram of 8051 microcontroller:

registers
Several lo
memory.
The processaoF of 8051 microcontrollers possesses a special feature by which it can process single
bit or 8-bit data. This simply means that it has the ability to access each single bit data either to
clear, set or move etc. for any logical computation.

3|Page

| Architecture of 8051 Microcontroller |

1.2.2. Memory: Basically 805
and on-chip data memory i.

RAM,

icr

| Latcho |, o
; register | pointer '
99]_ - '
am ,
Temp Temp — ogr:ter o | .
register ___cou ' —) :
o= e Buffer 1 L .) oto7
_incrementer | :
P i
‘ =3 Port2 | |
RAM Buffer 2 «— ', [oto7
PSW 3 | address Program :
ist address :
ster register Latch 3 : e IR o
i M| i Rl N
and RAM EPROM ’ $ Buffer 3 i o
gl (ROM_ Interrupt,
Unit » ; :
L. Instruction | | Special purpose timer, serial
register register port and
memory
control

8051 holds a 128 bytes RAM. Basically, RAM is used to store data or operands for only a
small time duration. It can be altered anytime according to the need of the user. It is also
known as the data memory as it stores the data temporarily.

Out of the 128-byte RAM, first, 32 bytes is held by the working registers. Basically, these are

4|Page

4 banks which separately has 8 registers. These registers are accessed either by its name or
address. It is to be noted here that at a particular time only a single register bank can be used.

As in 8051, the data and program memory i.e., RAM and ROM hold a definite memory
space. However, for some applications there exist the need for external memory to enhance
the memory space, thus external RAM, ROM/EPROM is used by the 8051 microcontrollers.

1.2.3. Input/ Output port: 8051 consists of 4 parallel ports of 8 bit each thereby providing 32
input-output pins. All the 4 ports function bidirectional i.e., either input or out [
the software control.

1.2.4. Timer and Control Unit: Timers are used to create a time gap or de
8051 microcontroller consists of 2 timers of 16 bit each by whichithe sy
delays simultaneously in order to generate the appropriate delay.

1.2.5. 8051 Flag Bits and PSW Register

pointing to data. It is used by the 8054 to access exte

DPTR.

I memory using the address indicated by

Basically, microcontrollers re delays in which a physical device is used by the
processor to produce thefkespective delay. And this physical device is known as a timer.

The timer produces the ifg to the demand of the processor and sends the signal to
the processor o lay gets produced.

1.2.7. Pin diagram icrocontroller
Introduction,:

The 8051 micrg wller is a popular 8-bit microcontroller widely used in embedded systems. It
is a single-Ghip miCrocontroller with a Harvard architecture that includes a CPU, RAM, ROM,
and several peripherals. The 8051 microcontroller has a 40-pin dual in-line package (DIP) that

provides various inputs and outputs for communication with external devices.

8051 microcontroller is a 40 pin Dual Inline Package (DIP). These 40 pins serve different
functions like read, write, 1/0 operations, interrupts etc. 8051 has four 1/O ports wherein each
port has 8 pins which can be configured as input or output depending upon the logic state of the
pins. Therefore, 32 out of these 40 pins are dedicated to 1/O ports. The rest of the pins are
dedicated to VCC, GND, XTALI1, XTAL2, RST, ALE, EA’ and PSEN’. Pin diagram of 8051

5|Page

P1.001 401 vCC
P1.1d2 39 |1 P0.0 (ADO)
P1.23 38 [0 P0.1 (AD1)
P1.3]4 37 |3 P0.2 (AD2)
P1.405 36 [0 P0.3 (AD3)
P1.50]6 35 [0 P0.4 (AD4)
P1.67 34 [0 P0.5 (ADS)
P1.708 33 [0 P0.6 (ADB6)
RSTO9 32 [0 PO.7 (AD7)
(RXD)P30C]10 805] 31 pJ EAVPP
(TXD) P3.1 Q 11 30 [J ALE/PROG
(INTO) P3.2] 12 29 [0 PSEN
(INT1) P3.3] 13 28 [0 P2.7 (A15)
(TO) P3.4[] 14 27 O P2.6 (A14)
(T1) P35 15 26 [0 P2.5 (A13)
(WR) P3.6] 16 250 P2.4 (A12)
(RD) P3.74 17 241 P2.3 (A11)
XTAL2] 18 230 P2.2 (A10)
XTAL1 Q19 22 [0 P2.1 (A9)
GND] 20 21 [0 P2.0 (A8)

40 - PIN DIP

Ol

Description of the Pins :
Pin 1 to Pin 8 (Port 1) - 8 are assigned to Port 1 for simple 1/0 operations. They
can be configured ins depending on the logic control i.e. if logic zero (0)
is applied to the 1/0 it Wi as an output pin and if logic one (1) is applied the pin will
actasanin in. T

minimum of 2 machine cycles, the microcontroller will reset i.e. it will close and terminate
all activities. It is often referred as “power-on-reset” pin because it is used to reset the
microcontroller to it’s initial values when power is on (high).

Pin 10 to Pin 17 (Port 3) — Pin 10 to pin 17 are port 3 pins which are also referred to as P3.0
to P3.7. These pins are similar to port 1 and can be used as universal input or output pins.
These pins are bidirectional pins. These pins also have some additional functions which are
as follows:

6|Page

P3.0 (RXD) : 10th pin is RXD (serial data receive pin) which is for serial input. Through this
input signal microcontroller receives data for serial communication.

P3.1 (TXD) : 11th pin is TXD (serial data transmit pin) which is serial output pin. Through
this output signal microcontroller transmits data for serial communication.

P3.2 and P3.3 (INTO’, INT1’) : 12th and 13th pins are for External Hardware Interrupt O
and Interrupt 1 respectively. When this interrupt is activated(i.e. when it is low), 8051 gets
interrupted in whatever it is doing and jumps to the vector value of the interrupt (0003H for
INTO and 0013H for INT1) and starts performing Interrupt Service Routine (ISR) from that
vector location.

P3.4 and P3.5 (T0O and T1) : 14th and 15th pin are for Timer 0 and Timer 1 eXternal input.
They can be connected with 16 bit timer/counter.
P3.6 (WR’) : 16th pin is for external memory write i.e. writing data t
P3.7 (RD’) : 17th pin is for external memory read i.e. reading data fror
Pin 18 and Pin 19 (XTAL2 And XTAL1) — These pins:
oscillator which is generally a quartz crystal oscillator. They are to provide an external
clock frequency of 4MHz to 30MHz.
Pin 20 (GND) — This pin is connected to the ground. It h be provided with OV power
upply.

port 2 49ins also referred to as P2.0 to P2.7.
When additional external memory is interf@ced with the 8051 microcontroller, pins of port 2

al memory.
al memory.

Pin 29 (PSEN) — PSEN stands for le. It is output, active-low pin. This is
used to read external memory. In 8031 based systém where external ROM holds the program

Pin 30 (ALE/ PROG) - ress Latch Enable. It is input, active-high pin.
This pin is used to distin en memory chips when multiple memory chips are used.
It is also used to d ultiplexed address and data signals available at port 0.
During flash progra e amming of EPROM, this pin acts as program pulse input

(PROG).

external memoryi ing. In 8051, EA is connected to Vcc as it comes with on-chip ROM

to st other family members such as 8031 and 8032 in which there is no on-
chip in is connected to the GND.

Pin 32 i (Port 0) — Pin 32 to pin 39 are port 0 pins also referred to as P0.0 to P0O.7.
They aretbidirectional input/output pins. They don’t have any internal pull-ups. Hence, 10 K?

isters are used as external pull-ups. Port 0 is also designated as ADO-AD7 because
8051 multiplexes address and data through port 0 to save pins.
Pin 40 (VCC) — This pin provides power supply voltage i.e. +5 Volts to the circuit.

Uses of pin diagram of the 8051 microcontroller :

7|Page

The pin diagram of the 8051 microcontroller is used for various purposes in embedded systems.
Some of the main uses of the pin diagram are:

1. Interfacing with external devices: The 8051 microcontroller has several input/output pins
that can be used for interfacing with external devices such as sensors, actuators, displays, and
communication modules. The pin diagram provides the information about the location of
these pins, their functionalities, and their electrical characteristics.

2. Programming the microcontroller: The 8051 microcontroller can be programmed using
various programming languages such as Assembly, C, and BASIC. The pin ram provides
the information about the pins that are used for programming the microcontrol
PSEN pin and the ALE pin.

3. Debugging and testing: The pin diagram provides access to thef
microcontroller, such as the address and data buses, which ¢

1.2.8. Characteristics of 8051 Microco
An 8-bit processor.

Data memory or RAM of 128 byt
Program memory or ROM K

2 timers of 16 bit each.

8-bit data bus.
16-bit address bus.

ler

© NN E

1.3. 805 paming in Assembly Language
The assemi age is a low-level programming language used to write program code in
terms of mnemonics. Even though there are many high-level languages that are currently in

demand, assémbly programming language is popularly used in many applications. It can be used
for direct hardware manipulations. It is also used to write the 8051 programming code efficiently
with less number of clock cycles by consuming less memory compared to the other high-level
languages.

1.3.1. 8051 Programming in Assembly Language

8|Page

The assembly language is a fully hardware related programming language. The embedded
designers must have sufficient knowledge on hardware of particular processor or controllers
before writing the program. The assembly language is developed by mnemonics; therefore, users
cannot understand it easily to modify the program.

| Source File.asm \ 5

\ 4

Assembler |=p» OBJ Q\

¥

Linker

]

Executable
File)

Microcontrollers or process only binary language in the form of ‘Os or 1s’;
An assembler converts ,th language to binary language, and then stores it in

1.3.2. 8051 Mi

The 8051 microcon the CISC based Harvard architecture, and it has peripherals like 32
I/0, tim lal communication and memories. The microcontroller requires a
program te ‘ jhe operations that require a memory for saving and to read the functions.
The 8051 miCrocontroller consists of RAM and ROM memories to store instructions.

9|Page

External

Interrupts
On-Chip
INTO
l lINT".L 2OM
(for . "
Interrupt Program D;:;'“ e | 2
Control 3 code) Timer 0 i—} %
=
4 Tirmer 1 *ﬁ a
4L s -
P
¥
CPU <
N S S
05C BUS 4 1/0 Ports Serial
Control Port
30PF 30PF l l II Il I I l X
TXD RXD
Address/Data
4 to 30 MHz
8051 Mierocontrol rchitecuture

The assem language is made up of elements which all are used to write the program
in sequentialymanner. Follow the given rules to write programming in assembly language.

1.3.3.1. Rules of Assembly Language
The assembly code must be written in upper case letters

The labels must be followed by a colon (label:)
All symbols and labels must begin with a letter

10|Page

All comments are typed in lower case
The last line of the program must be the END directive
The assembly language mnemonics are in the form of op-code, such as MOV, ADD, JMP, and

so on, which are used to perform the operations.

MpV a,b

Op code Operands

Op-code: The op-code is a single instruction that can be executed By the CF @ the op-code
isa MOV instruction.

Operands: The operands are a single piece of data that be operated by the op-code.
Example, multiplication operation is performed by the operan t are multiplied by the
operand.

1.3.4. The Elements of an Assembly

Assembler Directives
Instruction Set
Addressing Modes

the"directions to the CPU. The 8051 microcontroller consists of
iVes to give the direction to the control unit. The most useful

ORG(origin): This directive indicates the start of the program. This is used to set the register
address during assembly. For example; ORG 0000h tells the compiler all subsequent code
starting at address 0000h.

Syntax: ORG 0000h

11|Page

ORG 0000h
]

. Y 7
directive starting address
of the memory

(define byte): The define byte is used to allow a string of bytes. For example, prigt the
“EDGEFX” wherein each character is taken by the address and finally prints the *s ” by the
DB directly with double quotes.

Syntax:
ORG 0000h
MOV a, #00h

DB”EDGEFX”

DB"STRING" /A\ /

EQU /}& / (equivalent): The equivalent directive is
used to ¥ 4 ate address of the variable.

Directive Print String

Syntax:
reg equ,09h

MOV reg,#2h
END:The EN isused to indicate the end of the program.

Syntax:
reg equ,

END

1.3.4.2. Embedded Systems - Addressing Modes

An addressing mode refers to how you are addressing a given memory location. There are five
different ways or five addressing modes to execute this instruction which are as follows —

Immediate addressing mode

12|Page

Direct addressing mode
Register direct addressing mode
Register indirect addressing mode
Indexed addressing mode
Immediate Addressing Mode
Let's begin with an example.
MOV A, #6AH

In general, we can write,

MOV A, #data
It is termed as immediate because 8-bit data is transferred immediate @ accumulator
(destination operand). \
Immediate Addressing Mode ‘ y
Instruction Opcode Bytes Cycles
MOV A, #6AH 74H 2 1

Program Memory

0207
0206
0205 | 6A | eon
0204

Accumulator

0203 6A

0202 74

0200 Program Counter

the next program memory address is transferred to accumulator A (EOH is the address of
accumulator). Since the instruction is of 2-bytes and is executed in one cycle, the program
counter will be incremented by 2 and will point to 0204 of the program memory.

Note — The '#' symbol before 6AH indicates that the operand is a data (8 bit). In the absence of
#', the hexadecimal number would be taken as an address.

13|Page

Direct Addressing Mode

This is another way of addressing an operand. Here, the address of the data (source data) is given
as an operand. Let’s take an example.

MOV A, 04H

The register bank#0 (4th register) has the address 04H. When the MOV instruction is executed,
the data stored in register 04H is moved to the accumulator. As the register 04H holds the data
1FH, 1FH is moved to the accumulator.

Note — We have not used '#' in direct addressing mode, unlike immediate mode. had used
#', the data value 04H would have been transferred to the accumulator ingtead®ef, 1FH.

Now, take a look at the following illustration. It shows how the instructio ted.

Direct Addressing Mode

Instruction Opcode Bytes Cycles

MOV A, #04H ES5 2 1

Program Memory

0207
0206 Aﬁc 1F
0205 '
0204
0203 04 - 1F 04H
0202 ES Register Bank #0
0201
V' 0200 0204
;
PC=PC+2

As shown imhe above illustration, this is a 2-byte instruction which requires 1 cycle to
complete. The PC will be incremented by 2 and will point to 0204. The opcode for the
instruction MOV A, address is E5H. When the instruction at 0202 is executed (E5H), the
accumulator is made active and ready to receive data. Then the PC goes to the next address as
0203 and looks up the address of the location of 04H where the source data (to be transferred to
accumulator) is located. At 04H, the control finds the data 1F and transfers it to the accumulator
and hence the execution is completed.

14|Page

Register Direct Addressing Mode

In this addressing mode, we use the register name directly (as source operand). Let us try to
understand with the help of an example.

MOV A, R4

At a time, the registers can take values from RO to R7. There are 32 such registers. In order to
use 32 registers with just 8 variables to address registers, register banks are used. There are 4
register banks named from 0 to 3. Each bank comprises of 8 registers named froN R7.

Register Direct Addressing Mode

Instruction Opcode Bytes Cycles

MOV A, R4 ECH 1 1

Data Memory

ocC 2F
ACC 2F 0B

— RB1

0202 EC 06

0200 04 2F

— RBO

0203 02
Program Counter 01

At a time, gister bank can be selected. Selection of a register bank is made possible
through a Special Function Register (SFR) named Processor Status Word (PSW). PSW is an
8-bit SFR where each bit can be programmed as required. Bits are designated from PSW.0 to

PSW.7. PSW.3 and PSW.4 are used to select register banks.
Now, take a look at the following illustration to get a clear understanding of how it works.

Opcode EC is used for MOV A, R4. The opcode is stored at the address 0202 and when it is
executed, the control goes directly to R4 of the respected register bank (that is selected in PSW).
If register bank #0 is selected, then the data from R4 of register bank #0 will be moved to the
accumulator. Here 2F is stored at 04H. 04H represents the address of R4 of register bank #0.

15|Page

Data (2F) movement is highlighted in bold. 2F is getting transferred to the accumulator from data
memory location 0C H and is shown as dotted line. OCH is the address location of Register 4
(R4) of register bank #1. The instruction above is 1 byte and requires 1 cycle for complete
execution. What it means is, you can save program memory by using register direct addressing
mode.

Register Indirect Addressing Mode
In this addressing mode, the address of the data is stored in the register as operand.

MOV A, @R0O
Register Indirect Addressing Mode

Instruction Opcode Bytes Cycles

MOV A, @ RO E6H 1 1

Data memory

Program Memory
21 J
! —=20 2F
ACC 2F
06 L
05
0204 04
0203 03 N
0202 EC 02
0201 01
0200 | 0203 | L 00 20 2
PC=PC +1

of register bank #0 holds the data 20H. Program control moves to 20H where it locates the data
2FH and it transfers 2FH to the accumulator. This is a 1-byte instruction and the program counter
increments by 1 and moves to 0203 of the program memory.

Note — Only RO and R1 are allowed to form a register indirect addressing instruction. In other
words, the programmer can create an instruction either using @R0O or @R1. All register banks
are allowed.

16 |Page

Indexed Addressing Mode
Indexed Addressing Mode

Instruction Opcode Bytes Cycles

MOVC A, @A +DPTR a3H 1

N

Program Memory

(=]
o
o
w
e

0202 ACC 02 |_ —
0201 —1

0200 Data — A

O1FF

O1FE Q

01FD 01 FE DPTR

01FC DPH DPL

01FB 93

O1FA 01FC

- PC = PC + 1

7
We will take two examples to understand the concept of indexed addressing mode. Take a look
at the following instructions

MOVC A, @A+DPTR

where DPTR is theydata peinter and PC is the program counter (both are 16-bit registers).

The source @perand is @A+DPTR. It contains the source data from this location. Here we are
adding the cantents of DPTR with the current content of the accumulator. This addition will give
a new address which is the address of the source data. The data pointed by this address is then
transferred to the accumulator.

The opcode is 93H. DPTR has the value 01FE, where 01 is located in DPH (higher 8 bits) and
FE is located in DPL (lower 8 bits). Accumulator has the value 02H. Then a 16-bit addition is
performed and 01FE H+02H results in 0200 H. Data at the location 0200H will get transferred to

17 |Page

the accumulator. The previous value inside the accumulator (02H) will be replaced with the new
data from 0200H. The new data in the accumulator is highlighted in the illustration.

This is a 1-byte instruction with 2 cycles needed for execution and the execution time required
for this instruction is high compared to previous instructions (which were all 1 cycle each).

The other example MOVC A, @A+PC works the same way as the above example. Instead of
adding DPTR with the accumulator, here the data inside the program counter (PC) is added with
the accumulator to obtain the target address.

1.3.4.3. Instruction Set

In the sequence of instructions to be executed, it is often necessary to trah
a different location. There are many instructions in the 8051 to achieve tf
the control transfer instructions available in 8051 Assembly lan S
discuss instructions used for looping, as well as instructions for condiiional and unconditional
jumps. In the second section we examine CALL instructio d their u
time delay subroutines are described for both the traditional 80 d its néwer generation.

gram coftrol to

Looping in the 8051
Repeating a sequence of instructions a certal

it is not zero, it jumps to the target a
the register is loaded with the counte
both the register decrement

V4

by the label. Prior to the start of the loop
er of repetitions. Notice that in this instruction

Write a program to

{a) clear ACC, then

(b} add 3 to the accumulator ten times.
Solution:

;This program adds wvalue 3 co the ACC ten cimes

MOV A, #0 ;A=0, clear ACC
MOV RZ,#10 ;load counter R2=10
AGAIN: ADD A, #03 ;add 03 to ACC
DIJNZ R2Z,AGRIN ;repeat until R2=0{10 times)
MOV RE,A ;save A in RS

In the program in Example, the R2 register is used as a counter. The counter is first set to 10. In
each iteration the instruction DJNZ decrements R2 and checks its value. If R2 is not zero, it
jumps to the target address associated with the label “AGAIN”. This looping action continues
until R2 becomes zero. After R2 becomes zero, it falls through the loop and executes the

18| Page

instruction immediately below it, in this case the “MOV RS , A” instruction. Notice in the DINZ
instruction that the registers can be any of RO — R7. The counter can also be a RAM location

Loop inside a loop

As shown in Example the maximum count is 256. What happens if we want to repeat an action
more times than 2567 To do that, we use a loop inside a loop, which is called a nested loop. In a
nested loop, we use two registers to hold the count.

Example ’
Write a program to (a) load the accumulator with the value 55H, and (b) complement'the ACC
700 times.
Solution:
Since 700 is larger than 255 (the maximum capacity of any registe e use
the count. The following code shows how to use R2 and R3 for the co

0 registers to hold

MOV A, #55H
MOV R3,#10
NEXT: MOV R2,#70
AGAIN: CEL A
DJNZ R2,AGAIN /

DJNZ R3,NEXT

e

;A=55H
:R3=10, the outer loop count)
tR2=70, the inner loop count
jcomplement A register

irepeat it 70 times (inner loop)

In this program the inner loop count. In the instruction “DIJNZ R2 , AGAIN”,
whenever R2 be through and “DJNZ R3 , NEXT” is executed. This instruction
forces the CPU to | R2 with the count 70 and the inner loop starts again. This process will
continue s zero and the outer loop is finished.

Other conditional jumps
Conditional jemps for the 8051 are summarized in Table 3-1. More details of each instruction are

provided in Appendix A. In Table 3-1, notice that some of the instructions, such as JZ (jump if A
= zero) and JC (jump if carry), jump only if a certain condition is met. Next we examine some
conditional jump instructions with examples.

JZ (jump if A=0)

19| Page

In this instruction the content of register A is checked. If it is zero, it jumps to the target
address. For example, look at the following code.

JA=RD
;jump if A = 0
;A=R1
;jump if A = 0
MOV A,RO
JZ OVER
MOV A,R1
JZ OVER
Instruction Action
Iz Jump if A=10
INZ Jump ifAz 0
DINZ Decrement and jump if
register = 0
CINE A, data Jump if A = data /\ /
CJINE reg, #data Jump if byte = #data f
IC Jump if CY =1
JNC Jump if CY =0
JB Jump if bit = 1

INB Jump if bit = 0
JBC Jump if bit = 1 and clear bit 2

In this program,. if eith zero, it jumps to the label OVER. Notice that the JZ
instruction can be used A. It can only check to see whether the accumulator is
zero, and it does not app y otlier register. More importantly, you don’t have to perform an

arithmetic instr

Exampl
Write a program to determine if RS contains the value 0. If so, put 55H in it.

Solution:
MOV A,RS ;copy RS to A
JNZ MNEXT ;jump if A is not zero
MOV RE,H#5G5H

NEXT:

JNC (jump if no carry, jumps if CY =0)
In this instruction, the carry flag bit in the flag (PSW) register is used to make the decision
whether to jump. In executing “JNC label”, the processor looks at the carry flag to see if it is

20| Page

raised (CY =1). If it is not, the CPU starts to fetch and execute instructions from the address of
the label. If CY =1, it will not jump but will execute the next instruction below JNC.

Note that there is also a “JC label” instruction. In the JC instruction, if CY = 1 it jumps to the
target address. We will give more examples of these instructions in the context of applications in
future chapters.

There are also JB (jump if bit is high) and JNB (jump if bit is low) instructions. These are
discussed in Chapters 4 and 8 when bit manipulation instructions are discussed.

All conditional jumps are short jumps

It must be noted that all conditional jumps are short jumps, meaning that th ddress he target
must be within -128 to +127 bytes of the contents of the program C). THiS very
important concept is discussed at the end of this section.

Unconditional jump instructions
The unconditional jump is a jump in which control is tra
location. In the 8051 there are two unconditional jumps: LJ
jump). Each is discussed below.

LJIMP (long jump)

address space of 64K byte
ROM. The original 8051 ha

the first byte is the opcode and the second byte is the relative address
. The relative address range of 00 — FFH is divided into forward and
backward jumps; that is, within -128 to +127 bytes of memory relative to the address of the
gram counter). If the jump is forward, the target address can be within a space of
127 bytes from the current PC. If the target address is backward, the target address can be within
-128 bytes from the current PC. This is explained in detail next.

Calculating the short jump address

In addition to the SJIMP instruction, all conditional jumps such as JNC, JZ, and DJNZ are also
short jumps due to the fact that they are all two-byte instructions. In these instructions the first
byte is the opcode and the second byte is the relative address. The target address is relative to the

21| Page

value of the program counter. To calculate the target address, the second byte is added to the PC
of the instruction immediately below the jump.

Shifting Operators

The shift operators are used for sending and receiving the data efficiently. The
8051 microcontroller consist four shift operators:

RR —> Rotate Right

RRC —>Rotate Right through carry

RL —> Rotate Left

RLC —>Rotate Left through carry
Rotate Right (RR):
In this shifting operation, the MSB becomes LSB and all bits shift to s right Side bit-by-bit,
serially.

Syntax:

MOV A, #25h
RR A Q /
» X)
'

0 0 1 0

25h | ¢ 0 1

N N [N N N I

Rotate Left (RL):
In this shifting
serially.

becomes LSB and all bits shift towards Left side bit-by-bit,

Syntax:
MOV A, #
RL A

22| Page

RRC Rotate Right through Carry:
In this shifting operation, the LSB moves to carry and the carry becomes MSB, and all the bits
are shift towards right side bit by bit position.

Syntax:
MOV A, #27h
RRC A

RLC Rotate Left through Carry:
In this shifting operation, the MSB moves to carry and the carry becomes nd all the bits
shift towards left side in a bit-by-bit position.

Syntax:
MOV A, #27h
RLC A

Basic Embedded C Programs:

e of operating system. There are many
S andjso on. However, RTOS has several
of the Assembly levels programming

ing with 8051 microcontroller:

lay using 8051 microcontroller
m using 8051 microcontroller

V P1, #01 //move 00000001 to the p1l register//
/lexecute the delay//

MOV A, P1 /Imove p1 value to the accumulator//

CPL A /lcomplement A value //

MOV P1, A /Imove 11111110 to the port1 register//
CALL DELAY //execute the delay//

SJMP TOGLE

DELAY: MOV R5, #10H //load register RS with 10/

23| Page

TWO: MOV R6, #200 //load register R6 with 200/
ONE: MOV R7, #200 //load register R7 with 200//
DINZ R7,$ //decrement R7 till it is zero//

DJNZ R6, ONE //decrement R7 till it is zero//

DJNZ R5, TWO //decrement R7 till it is zero//

RET /lgo back to the main program //

END

1.4. Programming Parallel port
1.4.1. 8051 Microcontroller port programming

There are four ports PO, P1, P2 and P3 each use 8 pins, making them 8-bit \ he ports upon
RESET are configured as output, ready to be used as output ports. To y of thesewports as an input

port, it must be programmed.

1.4.2. Pin configuration of 8051/8031 microcontroller. \

24| Page

PLO Vee
PL1 P0.0 (ADO)
P12 PO.1 (AD1)
PL3 P02 (AD2)
PL4 P0.3 (AD3)
P15 8 PO.4 (AD4)
PL& 0 PO.5 (ADS)
PL7 S PO.6 (ADS)
RST 1 PO.7 (ADT)
(RXD) F3.0 / EA/VPP
(TXD) P3.1 8 ALE/PROG
(INTO) P3.2 0 PSEN
(INT1) P3.3 i P2.7 (A15)
(TO) P34 P26 (Al
(T} P35 P2.5 (Al3)
(WR) F3.6 P24 (A12)
(RD) P3.7 P2.3 (All)
XTAL2 P2.2 (A10)
XTAL1 P2.1(A9)
GND P20 (A8)

Pin gonfiguration of 8951

ins (pins 32-39) .1t can be used for input or output. To use the pins of
ut gports, each pin must be connected externally to a 10K ohm pull-up
hat PO is an open drain, unlike P1, P2, and P3.0Open drain is a term used
ay that open collector is used for TTL chips. With external pull-up resistors

BACK: MOV PO,A
ACALL DELAY
CPLA

SIMP BACK

25| Page

Port 0 as Input : With resistors connected to port O, in order to make it an input, the port must be
programmed by writing 1 to all the bits. In the following code, port O is configured first as an input port
by writing 1’s to it, and then data is received from the port and sent to P1.

+Vee

I EEEEET

BPO.0
PO.1 P
8 PO.2 o
PO.3 r
0 PO.4 t
PO.5
5 P0.6 0
PO.7
1
pull-up resistors = 10k
8051 1/0 Ports D 4
MOV A #0FFH ; A =FF hex
MOV PO,A ; make PO an input port /
BACK: MOV A,PO ;get data from PO
MOV P1,A ;send it to port 1

SJMP BACK

Dual role of port 0: Port O is also,desi -AD7, allowing it to be used for both address and
data. When connecting an 805 an mory, port O provides both address and data. The
8051 multiplexes address and data t port'0 to save pins. ALE indicates if PO has address or data.
When ALE = 0, it provi -D7, hut when ALE =1 it has address and data with the help of a
74L.S373 latch.

Port 1: Port 1

1 A =55 hex
:send it to Port 1

ACALL DELAY ;call delay routine
CPL A :make A=0
SIJMP BACK

Port 1 as input: To make portl an input port, it must programmed as such by writing 1 to all its bits. In
the following code portl is configured first as an input port by writing 1’s to it, then data is received from
the port and saved in R7 ,R6 & R5.

26| Page

MOV A#OFFH ;A=FF HEX

MOV P1,A ;make P1 an input port by writing all 1’s to it
MOV AP1 ;get data from P1

MOV R7,A ;save it in register R7

ACALL DELAY ;wait

MOV AP1 ;get another data from P1

MOV R6,A ;save it in register R6

ACALL DELAY ;wait

MOV AP1 ;get another data from P1

MOV R5,A ;save it in register R5

Just li 1, P2
reset,Port 2 is
to port 2 the

Port 2 : Port 2 occupies a total of 8 pins (pins 21- 28). It can be used as input ©
does not need any pull-up resistors since it already has pull-up resistors interne
configured as an output port. For example, the following code will sen@hout cont
alternating values 55h and AAH. That is all the bits of port 2 toggle continu

MOV A #55H ; A =55 hex

BACK: MOV P2,A ;send it to Port 2

ACALL DELAY ;call delay routine

CPL A :make A=0 /
SIMP BACK

Port 2 as input : To make port 2 an inpuf, i as such by writing 1 to all its bits. In the
following code, port 2 is configured firs i writing 1’s to it. Then data is received from

MOV A #0FFH :A=FF h
MOV P2,A ‘ma
BACK: MOV AP2
MOV P1LA

SIMP BACK

Dual rol : ystems based on the 8751, 8951, and DS5000, P2 is used as simple I/O.
However, stems, port 2 must be used along with PO to provide the 16-bit address for the
external m own in pin configuration 8051, port 2 is also designed as A8-Al5, indicating the

dual functiony Since an 8031 is capable of accessing 64K bytes of external memory, it needs a path for the
16 bits of the @ddress. While PO provides the lower 8 bits via A0-A7, it is the job of P2 to provide bits
AB8-Al5 of the address. In other words, when 8031 is connected to external memory, P2 is used for the
upper 8 bits of the 16 bit address, and it cannot be used for 1/0.

Port 3 : Port 3 occupies a total of 8 pins, pins 10 through 17. It can be used as input or output. P3 does
not need any pull-up resistors, the same as P1 and P2 did not. Although port 3 is configured as an output
port upon reset. Port 3 has the additional function of providing some extremely important signals such as
interrupts. This information applies both 8051 and 8031 chips.

27 |Page

Read-modify-write feature : The ports in the 8051 can be accessed by the read-modify-write technique.
This feature saves many lines of code by combining in a single instruction all three action of (1) reading
the port, (2) modifying it, and (3) writing to the port. The following code first places 01010101 (binary)
into port 1. Next, the instruction “XLR P1,#0FFH” performs an XOR logic operation on P1 with 1111
1111 (binary), and then writes the result back into P1.

MOV P1,#55H ;P1=01010101

AGAIN: XLR P1,#0FFH ;EX-OR P1with11111111
ACALL DELAY

SIMP AGAIN

1.4.3. Addition of two 8-bit numbers in 8051 Microcontroller Using P@

To perform addition of two 8-bit numbers using ports in 8051
to connect the two 8-bit numbers to be added to two ports of the mi€kecontro
two ports of the microcontroller, for example, P1 and P2.

€ Can use any

The first step is to load the two numbers into two different ports. For example, we can
load the first number into port P1 and the second number into p 2. We can use the MOV
instruction to load the numbers into the ports.

use the ADD instruction to add the
of the accumulator and the specified
the two numbers are already loaded into
ith the accumulator and the appropriate port.

two numbers. The ADD instruction
operand and stores the result in the
the ports, we can simply use the AD

After the additio e can retrieve the result from the accumulator and store
it in another port or me location foF further processing or display. 8051 microcontroller is a
microcontroller designedib 81. It is an 8-bit microcontroller with 40 pins DIP (dual

ge and 128 bytes of RAM storage, 16-bit timers. It consists of

Issues in ition of two 8-bit numbers 8051 Microcontroller Using Ports :
There are

status word (PSW) will be set. If this flag is not checked before storing the result, the result
may be incorrect.

2. Input validation: Before performing the addition, it is important to validate the input to
ensure that the numbers are within the range of 0 to 255. If the input is not validated, the
result may be incorrect.

28| Page

Port initialization: The ports used for input and output must be properly initialized before
use. If the ports are not properly initialized, the data may not be transferred correctly.
Endianness: The order in which the bytes of the numbers are stored in memory can affect the
result of the addition. It is important to ensure that the bytes are stored in the correct order
before performing the addition.

Interrupts: If interrupts are enabled during the addition operation, the result may be affected.
It is important to disable interrupts during critical operations to ensure the correct result.
Timing: The timing of the addition operation can affect the result. It is imp rtant to ensure
that the necessary delays are added between instructions to ensure correct 0
Code optimization: The code used to perform the addition should be op
it uses the least number of instructions and takes the least amount of
to avoid potential timing issues and to ensure that the microcontroller
while the addition is being performed.

other tasks

Problem: To write an assembly language program to two 8 umbers in 8051
microcontroller using ports.
Example:
WITH CARRY
INPUT PORTS OUTPUT PORTS(SUM)
PORT PORT 0 PORT 1 PORT 2 (CARRY) PORT 3
DATA E7 Fé 01 DD
WITHOUT CARRY
INPUT PORTS OUTPUT PORTS(SUM)
PORT PORT 0 PORT 1 PORT 2(CARRY) PORT3
DATA o1 02 00 03

Block diagram: ‘

29| Page

INPUT INPUT

PORT PO PORT P1

> B REGISTER A REGISTER <

PORT P2 Q-‘ CARRY PRESENT

OUTPUT

s [——) rorte

7
Algorithm: \
- Initialize Ports PO and P1 as input ports.

Initialize Ports P2 and P3 as output ports. /
Initialize the R1 register.

Move the contents from Port 0 to B regi
Move the contents from Port 1 to
Add contents in A and B.

If carry is present increment R1.
Move contents inR1to P

Program:
ORG 00H starting address

itializes PO as input port
Initializes P1 as input port
/I Initializes P2 as output port
/I Initializes P3 as output port

L1:MOV R1{#00H [/l Initializes Register R1

MOV B,P0 /l Moves content of PO to B

MOV AP1 / Moves content of P1to A

CLRC /I Clears carry flag

ADD AB /I Add the content of A and B and store result in A
JNC L2 /I 1f carry is not set, jump to label L2

30| Page

INC R1 /I Increment Register R1 if carry present

L2: MOV P2, R1 /I Moves the content from Register R1 to Port2
MOV P3,A /I Moves the content from A to Port3

SJMP L1 /[Jumps to label L1

END

Explanation:

ORG 0O0H is the starting address of the program.

Giving the values as #OFFH and #00H initializes the ports as input and ut ports
respectively.
R1 register is initialized to 0 so as to store any carry produced during th
MOV B, PO moves the value present in PO to the B register.
MOV A, P1 moves the value present in P1 to Accumulator.
ADD AB adds the values present in Accumulator and,B registerfand stores the result in
Accumulator.

JNC L2 refers to jump to label L2 if no carry is present by a atically checking whether
the carry bit is set or not.

If the carry bit is set to increment register R /

MOV P2, R1, and MOV P3, A refers to ing the carry bit to P2 and result in Accumulator
to P3.

1.5. 8051 Timers

1.5.1. Introduction to 8051 Timers

8051 microcontrollers ha two and counters which work on the clock
frequency. Timer/counter,ca time delay generation, counting external events, etc.

8051 Clock

Every Timer nee to work, and 8051 provides it from an external crystal which is the

cle frequency.

Xtal . To
Qscillator =12 Timer

8051 Timer Clock

For example, suppose we have a crystal frequency of 11.0592 MHz then the microcontroller will
provide 1/12th i.e.

31|Page

Timer clock frequency= (Xtal Osc.frequency)/12 = (11.0592 MHz)/12 =921.6 KHz
period T= 1/(921.6 kHz)=1.085 uS

1.5.2. 8051 Timer

8051 has two timers TimerO (T0) and Timerl (T1), both are 16-bit wide. Since 8051 has 8-bit
architecture, each of these is accessed by two separate 8-bit registers as shown in the figure
below. These registers are used to load timer count.

F

D15 | D14 | D13 | D12 | D11 | D10 | D9 D3 D7 D6 D35 D4 D3 D2 D1 | Do ‘T{I

TH1 TL1
D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 D5 | D4 ' D3 | D2 | D1 | Do |T1
8051 has a Timer Mode Register and Timer @GOntrolRegiSter for selecting a mode of operation

and controlling purpose.
Let's see these registers,

1.5.2.1. TMOD register

TMOD is an 8-bit register us tt of timer0 and timerl.
Timer 1 Tlmer 0
7 6 5 4 3 2 1 0
GATE Ut M1 Mo GATE Co/T0 M1 Mo TMOD
Its lowe its are uwr Timer0 and the upper 4 bits are used for Timerl
Bit7,3 -

Counter/Timer): Timer or Counter select bit
1 = Use as Counter
0 = Use as Timer

Bit 5:4 & 1:0 - M1:MO: Timer/Counter mode select bit
These are Timer/Counter mode select bit as per the below table

32|Page

M1 | MO | Mode Operation
0 0 |0 (13-bittimer mode) 13-bit timer/counter, 8-bit of THx & 5-bit of TLx

0 |1 |1 (16-bittimer mode) 16-bit timer/counter, THx cascaded with TLx

8-bit timer/counter (auto-reload mode), TLx reload

110 2(@bitadto-reload mode) with the value held by THx each time TLx overflow

Split the 16-bit timer into two 8-bit timers i.e. THX
and TLx like two 8-bit timer

1.5.2.2. TCON Register (\

7 6 5 4 3 2 1 0

1 |1 | 3(split timer mode)

TCON is an 8-bit control register and contains a timer and i
Bit 7 - TF1: Timerl Overflow Flag
1 = Timerl overflow occurred (i.e. Timerl goes to its max a
0 = Timerl overflow not occurred.
It is cleared through software. In the Timerl oyerflow interftipt service routine, this bit will get
cleared automatically while exiting from ISR.

Il over back to zero).

Bit 6 - TR1: Timerl Run Control Bit
1 = Timerl start.
0 = Timer1 stop.
It is set and cleared by software.

. In the Timer0 overflow interrupt service routine, this bit will get
exiting from ISR.

0 = TimerO0 stop.
It is set and cleared by software.

Bit 3 - IEL: External Interruptl Edge Flag
1 = External interruptl occurred.
0 = External interruptl Processed.
It is set and cleared by hardware.

33| Page

Bit 2 - IT1: External Interruptl Trigger Type Select Bit
1 = Interrupt occurs on falling edge at INT1 pin.
0 = Interrupt occur on a low level at the INT1 pin.

Bit 1 — IEO: External InterruptO Edge Flag

1 = External interruptO occurred.

0 = External interruptO Processed.
It is set and cleared by hardware. ’
Bit 0 — ITO: External InterruptO Trigger Type Select Bit

1 = Interrupt occurs on falling edge at INTO pin.

0 = Interrupt occur on a low level at INTO pin.

Let's see the timers modes

1.5.3. 8051 Timer Modes
Timers have their operation modes which are se d in thegPMOD register using MO & M1 bit
combinations.

Mode 0 (13-bit timer mode)

The Mode 0 operation is the 8:bit timer or counter with a 5-bit pre-scaler. So it is a 13-bit
timer/counter. It uses 5 bits LOor | of the 8-bits of THO or TH1.
V4
Timnerl 5 bits 8 bits

mcrement
input

Cause Timerl
TL1 ¥ THI1 2| Set TFl —— interrupt if

conditions are met

In this example th’e(rllg selected, in this case, every 32 (25)event for counter operations or

les for #imer operation, the TH1 register will be incremented by 1. When the
FH to 00H, then the TF1 of TCON register will be high, and it stops the
. So for an example, we can say that if the TH1 is holding FOH, and it is in timer
will be high after 10H * 32 = 512 machine cycles.

mode, then
MOVTMOD, #00H
MOVTH1, #0FOH
MOVIE, #88H
SETB TR1

34|Page

In the above program, the Timerl is configured as timer mode 0. In this case Gate = 0. Then the
TH1 will be loaded with FOH, then enable the Timerl interrupt. At last set the TR1 of TCON
register, and start the timer.

Model (16-bit timer mode)

The Mode 1 operation is the 16-bit timer or counter. In the following diagram, we are using
Mode 1 for TimerO.

Timer(16 bits 8 bits

INCIEMCR JTHO, TLOF— Set TFO |—> interrupt if

input by
conditions are met ,

In this case every event for counter operations or machine gycles for timer operation, the THO—
TLO register-pair will be incremented by 1. When the regi pair overflows from FFFFH to
the timer/counter. So for an

0000H, then the TFO of TCON register will be high, and it sto

example, we can say that if the THO — TLO register pair is_holding”FFFOH, and it is in timer
mode, then TFO will be high after 10H = 1 es. When the clock frequency is
12MHz, then the following instructions gen t 16 ps after TimerO starts running.

Cause Timer

MOVTMOD, #01H
MOVTLO, #0FOH
MOVTHO, #0FFH
MOVIE, #82H

SETB TRO

In the above pr 0_is configured as timer mode 1. In this case Gate = 0. Then the
TLO will be | d THO is loaded with FFH, then enable the Timer0 interrupt. At
last set the TRO of ister, and start the timer.

The Mode 2yoperation is the 8-bit auto reload timer or counter. In the following diagram, we are
using Mode 2"for Timer1.

In this case every event for counter operations or machine cycles for timer operation, the
TL1register will be incremented by 1. When the register pair overflows from FFH to 00H, then
the TF1 of TCON register will be high, also theTL1 will be reloaded with the content of TH1
and starts the operation again.

35|Page

Timerl
increment
input

Cause Timerl

Set TF1 (——interrupt if
conditions are met

TL1

W

Reload

TH1

Reload value

OHM is in

So for an example, we can say that if the TH1 and TL1 register both are holding
timer mode, then TF1 will be high after 10H= 16 machine cycles. When'th
12MHz this happens after 16 ps, then the following instructions g te an
16 s after Timer1 starts running.

MOVTMOD, #20H
MOVTL1, #0FOH
MOVTH1, #0FO0H /
MOVIE, #88H
SETBTR1

In the above program, the Timerl is €onfigured as timer mode 2. In this case Gate = 0. Then the
TL1 and TH1 are loaded wi : the Timerl interrupt. At last set the TR1 of

Mode 3 is different for imerl. When the Timer0 is working in mode 3, the TLO
ter. It will be controlled by the standard TimerO control bits,
0 is used as an 8-bit timer but not the counter. This is controlled by
. When the THO overflows from FFH to O0OH, then TF1 is set to 1. In the
n TimerO in Mode 3.

TO and INTO inp
Timerl Control bit
followin , we

36| Page

W

Timer0 i TLo Set TFO S Cause Timer0

increment interrupt if
input conditions are met
C;y;'“' § +12 |—e% o— THO »| Set TF1 —— Cause Timerl
- interrupt if
Run control conditions are met
TRI 1= Run
0= Stop

7
When the Timerl is working in Mode 3, it simply holds the caqunt b@ run. When
TimerO0 is in mode 3, the Timerl is configured in one of the mo 1 an his case, the
Timerl cannot interrupt the microcontroller. When the TF1 js used by "RHO0 timer, the Timerl is
used as Baud Rate Generator.

The meaning of gate bit in Timer0 and Timerl for mode 3 is asfigllows

It controls the running of 8-bit timer/counter TL@ as'like I\Ma 0, 1, or 2. The running of THO is

for. Timer0 has no specific role.

The mode 3 is present for applicatio iri a 8-bit timer/counter. In Mode 3 of

Timer0, the 8051 has three timers. HO, another8-bit timer/counter by TLO,
and one 16-bit timer/counter by Tim

g on either 0, 1 or 2, then the gun control of the
low or INT1 is high. The run control is deactivated

Parallel communication in 8051:
8051 can do'8-bit parallel communication as it has 8-bit ALU. For parallel communication, any

of the ports (PO / P1 / P2/ P3) is used as a transmission channel between transmitter and
receiver.

Serial communication in 8051:
For serial communication there are two separate pins known as serial port of 8051.

37| Page

SBUF
R=1
LSB MSB
||
processor
N MSB LSB
NI e =
=]
SBUF

TxD:
This pin basically acts as a transmitter (sending data), but in somg,other modes it doesn’t do the
job of transmitter. As it is serial communication, it,sends bit by bit, #e processor gives 8-bit at 1
time and those 8-bits are stored in a register napied BUF/zcessor gives 1 byte of data that is
to be transmitted to SBUF and from there bi bigAs.transferred , firstly LSB and then at last
nsmitted, an interrupt is sent to the

not auto cleared.

RxD:

This pin is basically for data reception . It received data bit by bit (as the transmitter sends LSB
first, it received LSB first). There is also a register SBUF which stores 8 received bits. Once the
8 bits are received, instead of sending an interrupt it firstly checks for errors (errors caused due
to transmission). Once there is no error in the received information R; flag is set and an interrupt
is sent to the processor. Processor goes to ISR (' here also R;j is not cleared automatically).

38| Page

How are SBUF in TxD and RxD different from each other ?
In SBUF of TxD, data is sent from processor to SBUF

In SBUF of RxD, data is sent from SBUF to the processor.
In this way both registers are differentiated by the processor.

There is a bit named SM ;
If SM> = 1, then after SBUF of RxD is filled there will be error check And if not
be no error check, directly an interrupt will be sent to the processor once SBUF i

D is filled.

1.6.1. Modes in serial communication:
Mode 1 (8-bit UART communication):
UART stands for universal asynchronous receiver-transmitter. It means receiver and transmitter
are asynchronous which mean they don’t have a common clock. Nor 8 bits are transmitted
through the channel, but in this mode 10 bits are transmitted&

start 8 bit data stop

Here start and stop bits are system generated.

Significance of start and stop bit:

For eg: There is a transmitter and rec . Fi 00 1000) data is transmitted and then
for 10min there is no transmission an@after that again 8EH (1000 1110)is transmitted.
If there is no transmission, IaWan i Id be remained in the channel

e Channel

no
communication

_ receiver
fransmitter

Receiver assumes blue data (when there was no communication) also as data.

39|Page

s Channel

C8H

no
communication

1 1
o | 0 0 0 0 0

receiver

transmitter

stores in SBUF. Then the 9th bit is 1, this bit is stored in Rgs (
after this whenever the next zero bit comes (that zeco bit iyscard
) N

and accepts the next 8 bits

and so on).
Mode 1
: Start bit 8 bit stop bit ;
eceiver | < <€—— | transmitter
’ 0 informatoin 1 2 !
start bit 1s stored in stored in
discarded SBUF RBS

Stop bit is also us mr 'checking. Whenever SM>=1, It checks for error, If the RB8 = 1
ans stop = ceived, so the data is received correctly) and if RB8=0 (transmitter
: received as 0) so there is an error. If there is an error in received data, no
eht to the processor.

This mode is*variable baud rate, which means it is triggered by timer 1.
Mode 2 (9-bit UART communication):

start 9th bit

8 bit data stop

The 9th bit is a programmable bit and it is given through TB8. Here 9th bit is 1 and it is used for
error checking and stop bit for triggering the data high (' so start bit gets 0 and so on).

40| Page

Why the 9th bit , when the already stop bit exists?

Standard value of 9th bit is 1 and can be made 0.

Whenever SM2 = 1(receiver accepts only errorless data) and if 9th bit is 1, then only errorless
data is accepted or else discarded. Discarding data is a purpose.

Mode 3 (9-bit UART communication):
This mode is completely similar to mode 2, in mode 2 for triggering timer is used Whereas in
this mode internal clock is used for triggering. It has a fixed baud rate.

Mode 0 :
Totally there were four modes in serial port of 8051, but for better understa
explained after three modes. In this mode data is transferred and received OR
channel. TxD is used for clocks. This is synchronous mode of co icatio
Such a system is also known as half duplex mode. It has fixed baud ra

SCON register: \

SM, | sM, | sM T | B

9 S 1 1

ode
Oligh the RxD

SMg and SM:
These are used to select the mode. {

SMo Mode

0 0
0 1
1 0 2
1 3

SM2:)

If SM2 = ked Or else no error checking is done.

REN:

Receiver ehablé N=1, receiver will receive the data or else not.

TBa:

This is the 9tibit to be transmitted.

RBs:

This is the 9th bit to be received.

Ti:

When 8-bits are received in SBUF , then Ri = 1, that would send an interrupt to the processor.

41| Page

R;:
When 8-bits are sent from SBUF,and SBUF is empty , then R; = 1, that would send an interrupt
to the processor. Before Ri=1, it checks for error based on SMa.

1.7. 8-Bit Interrupts

Interrupts are events detected by the MCU which cause normal program flow to be pre-empted.
Interrupts pause the current program and transfer control to a specified user-written firmware
routine called the Interrupt Service Routine (ISR). The ISR processes the intepfpt event, then
resumes normal program flow.

1.7.1. Overview of Interrupt Process
Program MCU to react to interrupts
The MCU must be programmed to enable interrupts to occur. Settingthe Global Thterrupt Enable
(GIE) and, in many cases, the Peripheral Interrupt Enable IE), ena e MCU to receive
interrupts. GIE and PEIE are located in the Interrupt Conteel (INTCON) special function
register.

Enable interrupts from selected peripheral

. A peripheral's individual interrupt
peripheral can generate an interrupt.
N, PIE1, PIE2, and PIE3.

rrupt flags are set regardless of the status of the GIE,
its. The interrupt flags are located in INTCON, PIR1,

Interrupt Request Flag
PEIE, and individual i
PIR2, and PIRS.

ISR.

1. Global Interrupts are disabled by clearing GIE to O.

2. The current program context is saved to the shadow registers.

3. The value of the Program Counter is stored on the return stack.

4. Program control is transferred to the interrupt vector at address 04h.

ISR runs
The ISR is a function written by the user and placed at address 04h. The ISR does the following:

42 |Page

Checks the interrupt-enabled peripherals for the source of the interrupt request.
Performs the necessary peripheral tasks.

Clears the appropriate interrupt request flag.
Executes the Return From Interrupt instruction (RETFIE) as the final ISR instruction.

P ophRE

Control is returned to the Main program
When RETFIE is executed:
1. Global Interrupts are enabled (GIE=1).
2. The program context is restored from the Shadow registers.
3. The return address from the stack is loaded into the Program Counte
4. Execution resumes from point at which it was interrupted.

1.7.2. Registers Used to Process Interrupts
Interrupt Control Register
INTCON register

‘ GIE ‘ PEIE ‘TMROIE‘ INTE ‘ I0CIE ‘TMROIF‘ INTF ‘ I0CIF |

bit 7

bit 0

GIE - Global Interrupt Enable /

PEIE - Peripheral Interrupt Enable

TMROIE - Timer0 Interrupt Enable

INTE - External Interrupt Enable

IOCIE 4nterrupt on Change Enable

TMROIF - Timer0 Interrupt f

INTF - External Interrupt flag

IOCIF 4nterrupt on C
INTCON contains glob
request flags and.i

Interrupt En
PIE1 register

interrupt enable flags as well as the individual interrupt
ags for three of the PIC16F1xxxXx interrupts.

’TMR1GIE ADIE RCIE | TXIE | SSPIE | CCP1IE | TMR2IE | TMRI1E

bit 7

bit 0

™ RlGI‘E;-’Timerrl Gate Interrupt Enable
ADIE - An#g-to-Digital Converter (ADC) Interrupt Enable

RCIE - Universal Synchronous Asynchronous Receiver Tranmsitter (USART) Receive
Interrupt Enable

TXIE - USART Transmit Interrupt Enable

SSPIE - Synchronous Serial Port (MSSP) Interrupt Enable
CCP1IE - CCP1 Interrupt Enable

43 |Page

TMR2IE - Timer2 Interrupt Enable
TMRU1IE - Timerl Interrupt Enable
PIE2 register

OSFIE | C2IE | CIIE | EEIE | BCLIE | LCDIE | -— |CCP2IE
bit 7 bit0

OSFIE - Oscillator Fail Interrupt Enable
C2IE - Cc parator C2 Interrupt Enable
C1IE - Cc parator C1 Interrupt Enable
EEIE - EE PROM Write Completion Interrupt Enable
BCLIE - MSSP Bus Collision Interrupt Enable
LCDIE - LCD Module Interrupt Enable
--- - Unimplemented, read as 0
CCP2IE - CCP2 Interrupt Enable
PIE3 register

CCPSIE | CCP4IE | CCP3IE | TMREIE | — | TMRAIE
bit 7 bit 0
--- - Unimplemented read as 0

CCPSIE - CCP5 Interrupt Enable

CCP4IE - CCP4 Interrupt Enable

CCP3IE - CCP3 Interrupt Enable

TMRGIE - Timer6 Interrupt Enable
--- - Unimp emented, read as
TMRAIE - Timer4 Interrup
--- - Unimp emented, r
PIE1, PIE2, and PIE3

PIR1 register

‘TMR1G|F ADIF | RCIF TXIF | SSPIF | CCP1IF | TMR2IF | TMRI1F
bit 7 bit 0

TMRLGIF ’flmM Gate Interrupt Flag

ADIF - AD—})nterrupt Flag

RCIF - USART Receive Interrupt Flag
TXIF - USART Transmit Interrupt Flag
SSPIF - MSSP Interrupt Flag

CCPL1IF - CCP1 Interrupt Flag

TMR2IF - Timer2 Interrupt Flag
TMRI1IF - Timerl Interrupt Flag

ividual interrupt enable flags for the MCU's peripherals.

44 |Page

PIR2 register

‘OSFIF‘ C2IF ‘ C1IF ‘ EEIF ‘BCLIF ‘ LCDIF‘ — ‘CCF’ZIFl

bit 7 bit 0

OSFIF - Oscillator Fail Interrupt Flag
C2IF - Cc parator C2 Interrupt Flag
C1IF - Cc parator C1 Interrupt Flag
EEIF - EE PROM Write Completion Interrupt Flag
BCLIF - MSSP Bus Collision Interrupt Flag
LCDIF - LCD Module Interrupt Flag
--- - Unimplemented, read as 0
CCP2IF - CCP2 Interrupt Flag
PIR3 register

CCP5IF | CCP4IF | CCPIIF | TMRBIF | — | TMRAIF
bit 7 bit 0

--- - Unimplemented, read as 0

CCPSIF - CCP5 Interrupt Flag

CCP4IF - CCP4 Interrupt Flag /
CCP3IF - CCP3 Interrupt Flag
TMRGIF - Timer6 Interrupt Flag
--- - Unimpemented, read as 0
TMRAIF - Timer4 Interrupt Flag
--- - Unimp emented, read as
PIR1, PIR2, and PIR3 co
OPTION_REG
OPTION_REG

ividual interrupt request flags for the MCU's peripherals.

WPUEN | INTEDG | TMROCS| TMROSE| PSA PS<2.0>

bit 7 bit0

The INT i YTION_REG is used to set a rising or falling edge on the INT pin as the

trigger for

Three interrupt sources (Timer0, External Interrupt, and Interrupt on Change) have interrupt
enable bits located in INTCON. These interrupts are referred to as core interrupts.

45| Page

INTCON

GIE PEIE | TMROIE | INTE IOCIE | TMROIF | INTF IOCIF
Global Individual Interrupt
Interrupt Interrupt Request Flags
Enable Enable Bits

@/
S

46| Page

UNIT II

EMBEDDED C PROGRAMM IN®
+ Memory And I/O Devices Interfach\(\,

+ Programming Embedded Systems in C

+ Need For RTOS
+ Multiple Tasks and ‘rocesses

+ Context Switchin

+ Priority Based Sc ling Policies

47 |Page

2.1. Memory and 1/O Interfacing
Several memory chips and 1/0 devices are connected to a microprocessor. The following figure
shows a schematic diagram to interface memory chips and 1/0 devices to a microprocessor.

External Interrupts

Interrupt 4k 128 bytes Timer 1
Control ROM RAM fimer 2 fo—

CPU <

AV 4 N/ AV 4

0sC Bus 4 1/0 Ports Serial
Control
-IDI_ PO P2 P1 P3 TXD RXD
Addr/Data

2.1.1. Memory Interfacing
When we are executing any
out by the microproces
decoding circuit.
Memory requires some d from and write to registers and microprocessor transmits
some signals fi i

struction, ress of memory location or an 1/0O device is sent

onding memory chip or I/O device is selected by a

signals. interfacing circuit should be designed in such a way that it matches the
memory uirements with the microprocessor's signals.

2.1.2.1/0i
As we kno eyboard and displays are used as communication channel with outside world.
Therefore, it is necessary that we interface keyboard and displays with the microprocessor. This
is called 1/0 interfacing. For this type of interfacing, we use latches and buffers for interfacing
the keyboards and displays with the microprocessor.

But the main drawback of this interfacing is that the microprocessor can perform only one
function.

48 | Page

8051 Microcontroller Memory Organization

In the 8051 Microcontroller, we have seen the 8051 Microcontroller Introduction and Basics, Pin
Diagram, Pin Description and the Architecture overview. we will continue exploring 8051
Microcontroller by understanding the 8051 Microcontroller Memory Organization, Program
Memory (ROM), Data Memory (RAM), External Memory.

Differences between microprocessor and microcontroller
The main difference can be stated as on-chip memory i.e., a Microcontroller h

to be externally interfacing with the memory modules.

Hence, it is clear that the memory is an important part of the 805
(for that matter, any Microcontroller). So, it is important for
Microcontroller Memory Organization i.e., how memoryai
accesses each memory and how to interface external memory

Before going in to the details of the 8051 Microgentroller Memory Organization, we will first
see a little bit about the Computer Architectuge” andthen groceed with memory organization of
8051 Microcontroller.

1.2.3. Types of Computer Architectu
Basically, Microprocessors or Micrtocontrollers are” classified based on the two types of
Computer Architecture: Von Neuma rchitecture and Harvard Architecture.

Von Neumann Archite
Von Neumann Archite or Princeton Architecture is a Computer Architecture, where the
Program i.e., the Instruc Data are stored in a single memory. Since the Instruction
Memory and are the same, the Processor or CPU cannot access both
Instructions and same time as they use a single bus. This type of architecture has
severe ligitations to the performance of the system as it creates a bottleneck while accessing the
memory.

49 |Page

Von Neumann Architecture

Memory //CENTRAL PROCESSING UNITY
Unit <+ (CPU) —pp | OUTPUT
. . . , DEVICES
Arithmetic Logic Unit
Data (ALU)
Memory
{Ram) (-)
— Control Unit (CU) ¢ INPUT
Program DEVICES
Memory (-)
(Rom) \ Registers: ACC, PC, 5P /

Harvard Architecture
Harvard Architecture, in contrast to Von Neumann Architecture,
Instruction (Program) and Data. Since the Instruction Mem
a Harvard Architecture, their signal paths i.e., buses are also different a
access both Instructions and Data at the same time.
Almost all Microcontrollers, including 8051 Mic/rooqntrollwple

Harvard Architecture

s separate memory for
ory are separate in
hence, the CPU can

nt Harvard Architecture.

DATA ﬂ:ENTRAL PROCESSING UNB
<= (CPU) OUTPUT
MEMORY — =) | DEvICES
(RAM) - Artihmetic Logic Unit
(ALU)
PROGRAM | <4mm (Control Unit (CU)) INPUT
MEMORY | 4= | peyices
(ROM) \(Registers: ACC, PC, SP >/

N,

1.2.4. 805 roller Memory Organization
The 8051 Microcontroller Memory is separated in Program Memory (ROM) and Data Memory
(RAM). The Program Memory of the 8051 Microcontroller is used for storing the program to be

executed i.e., instructions. The Data Memory on the other hand, is used for storing temporary
variable data and intermediate results.

8051 Microcontroller has both Internal ROM and Internal RAM. If the internal memory is
inadequate, you can add external memory using suitable circuits.

1.2.4.1. Program Memory (ROM) of 8051 Microcontroller

50| Page

In 8051 Microcontroller, the code or instructions to be executed are stored in the Program
Memory, which is also called as the ROM of the Microcontroller. The original 8051
Microcontroller by Intel has 4KB of internal ROM.

Some variants of 8051 like the 8031 and 8032 series doesn’t have any internal ROM (Program
Memory) and must be interfaced with external Program Memory with instructions loaded in it.

8051 Program Memory

HINENENENEN

| []
CPU

| (ALU, CU) :l

I

[] [|

PROGRAM

| wemory | []

| (ROM)
Almost all modern 8051 Microcontrollers 8 Series, have 8KB of Internal Program
Memory (ROM) in the form of Flash () and’provide the option of reprogramming

the memory.

In case of 4KB of Internal R
the program addresses exce
external Program Mem

e ss space is 0000H to OFFFH. If the address space i.e.,
e CPU will automatically fetch the code from the

For this, the External Ac@esS®Rin (EA Pin) must be pulled HIGH i.e., when the EA Pin is high,
the CPU first instructi
0000H to OFFFF he memory addresses exceed the limit, then the instructions are
fetched the exter OM in the address range of 1000H to FFFFH.

51|Page

Using Both Internal And External Program Memory With 8051

FFFFH
+5¥

EXTERMAL
L EA PROGRAM
{EAPINIS 1) MEMORY
{(ROM)
GaK

1000H

1

OFFFH
INTERNAL
PROGRAM
MEMORY

{ROM)

4K
There is another way to fetch the instructions: ignore the ernalbl\j and fetch all the
instructions only from the External Program Memory (External R For this scenario, the EA

Pin must be connected to GND. In this case, the ory Wesses f the external ROM will be
from 0000H to FFFFH.

Using Only External Program Memory With 8051

0000H

FFFFH
— EXTERNAL
N EA mmmp»- | PROGRAM
— MEMORY
8051 MICROCONTROLLER < (ROM)
64K
0000H
AN /
INTERNAL
A PROGRAM
MEKTORY
+(ROMX
/ N
1.2.4.2.Da ry (RAM) of 8051 Microcontroller

The Data Memory or RAM of the 8051 Microcontroller stores temporary data and intermediate
results that are generated and used during the normal operation of the microcontroller. Original
Intel’s 8051 Microcontroller had 128B of internal RAM.

52|Page

7FH FFH FEH
FOH|B
80
General
EcH|ACC
Purpose sor | Psw
Registers
geH| 1P
3an ol pa 1288 for
16 AgH|IE SFRs o
Bit-Addressable aoH|p2 (Special 128B Additional
Registers ssufssur Function Memory
20H soH [P registers)
1FH [k,
BANKS geyfng) 4
e Tl
BANK2 8%H [TMOD
I &7 [pe3N
BANKI1
S [834 [opH
BANKO gt
QOH |RO BCQH PO 80H
Lower 128B (O0H - 7FH) Upper 1288 (BOH - FFH)
(Direct and Indirect (Direct Addressing) (Indirect Addressing)

Addressin
9) But

6B of RAM. In this 256B, the first
in to Working Registers (organized as
Purpose RAM (also known as Scratchpad

almost all modern variants of 8051 Mict,
128B i.e., memory addresses from 00H to 7FH is
Register Banks), Bit — Addressable Area and Gener
area).
In the first 128B of RAM (fgom O0H to

e first 32B i.e., memory from addresses O0H to

1FH consists of 32 Working at are organized as four banks with 8 Registers in each

When addresSing the Register using its address i.e., 12H for example, the corresponding Bank
may or may not be selected. (12H corresponds to R2 in Bank2).

The next 16B of the RAM i.e., from 20H to 2FH are Bit — Addressable memory locations. There
are totally 128 bits that can be addressed individually using 00H to 7FH or the entire byte can be
addressed as 20H to 2FH.

53| Page

1.2.5. Interfacing External Memory with 8051 Microcontroller

It is always good to have an option to expand the capabilities of a Microcontroller, whether it is
in terms of Memory or 10 or anything else. Such expansion will be useful to avoid design
throttling. We have seen that a typical 8051 Microcontroller has 4KB of ROM and 128B of
RAM (most modern 8051 Microcontroller variants have 8K ROM and 256B of RAM).

The designer of an 8051 Microcontroller based system is not limited to the internal RAM and
ROM present in the 8051 Microcontroller. There is a provision of connecting both external RAM
and ROM i.e., Data Memory and Program.

The reason for interfacing external Program Memory or ROM is that coh
in high — level languages often tend to be larger and occupy more memory
Another important reason is that chips like 8031 or 8032, which d¢€sn’t ha
have to be interfaced with external ROM.

A maximum of 64KB of Program Memory (ROM) and Da emory (RAM) each can be
interface with the 8051 Microcontroller.

The following image shows the block diagramfof int faciéMKB of External RAM and 64KB
of External ROM with the 8051 MicroWle

Interfacing External Memory (Ram And Rom) With 8051

AD (D7) Crata (0-7)
FO
RAM
ALE (64K)
F2 —_—
R R
S0 OF
8051 Address (0-7)
MICROCONTRCOLLER
‘ ROM
Address (8.15) (64[{)
PSEN | OF

An important point to remember when interfacing external memory with 8051 Microcontroller is
that Port 0 (PO) cannot be used as an 10O Port as it will be used for multiplexed address and data
bus (A0 — A7 and DO — D7). Not always, but Port 2 may be used as higher byte of the address
bus.

54| Page

2.2. Embedded C Programming with Keil Language
Embedded C is most popular programming language in software field for developing electronic
gadgets. Each processor used in electronic system is associated with embedded software.

Embedded C programming plays a key role in performing specific function by the processor. In
day-to-day life we used many electronic devices such as mobile phone, washing machine, digital
camera, etc. These all device working is based on microcontroller that are programmed by
embedded C.

In embedded system programming C code is preferred over other languag e to theyfollowing
reasons:

o Easy to understand

o High Reliability

o Portability

o Scalability

Let's see the block diagram representation of embedded system ramming:

1. Use the compailer installed on your PC to write the
program and sclect the appropriate option to compile it
into hex code

llﬂ\'lﬂdr‘.rrgﬁ],h\\g :
\ o

2. To Load hexa code into the programmer (also
installed on your PC) and select the appropriate
option to load the program into the microcontroller

void delay();

.) Compller
void main()
'

while(1) '
¢ !
PO=0xFF; 1 2
delav(100) ¥ ° 3.Build the programmed microcontroller
PO=0x00; to the target device, form now on, it will
00); .
;"""-‘" 0); run by this program
H Program.c Programmer /"'_——— IO
10101010100 100101000 Frogrammed
01001010110101001011 / microcontroller
00101001010100101001 O =
010010010010001000 (
Program.hex > \ ‘
Basic compiler 01010000101110000100 v D
0100000000001 0000001
00001000100010010011

2.2.1. Embedded System Programming:

Basic Declaration

Let's see the block diagram of Embedded C Programming development:

55|Page

10000100
11001100

Human 01110010
Problem ==> | ciretions T 00001111 —p Solve

FProgramming Languages
(C, Embedded C, C++)

1 a collection
consisting of
esigned for function
so on are used for writing a C

Function is a collection of statements that is used for performing
of one or more functions is called a programming language. Eve
basic elements and grammatical rules. The C language pr@gramming
with variables, character set, data types, keywords, expression
program.

The extension in C language is known as embedded\C pr&mming language. As compared to
above the embedded programming in C is“a ome additional features like data types,
keywords and header file etc is represe

#include<microcontroller name.

Basic Embedded C Programmin
Let's see the block diag re ntation of Embedded C Programming Steps:

Step 1 10000100
4 Step2 11001100
Step 3 Human 01110010
Proplem ==> <> = Instructions — 00001111 —> Solve
- / =
Algorithm Flowchart Programming Languages

(C, Embedded C, C++)
The microcontroller programming is different for each type of operating system. Even though

there are many operating system are exist such as Windows, Linux, RTOS, etc but RTOS has
several advantage for embedded system development.

2.2.2. Basics of Embedded C Program

56 |Page

Embedded C is one of the most popular and most commonly used Programming Languages in
the development of Embedded Systems. So, we will see some of the Basics of Embedded C
Program and the Programming Structure of Embedded C.

2.2.2.1. What is an Embedded System?

An Embedded System is a combination of Hardware and Software. My desktop computer also
has hardware and software. Does that mean a desktop computer is also an Embedded System?
NO. A desktop computer is considered a general purpose system as it can do,many different
tasks that too simultaneously. Some common tasks are playing videos, working/ ffice suites,
editing images (or videos), browsing the web, etc.

An Embedded System is more of an application oriented system i.e. it is'@e ed to perform a
single task (or a limited number of tasks, but all working for a sing i

Embedded System Example: Washing Machine

rD()oo oﬂ _n_

099 -

ROM
Il
Il @

Output: Display, Motor

Control Unit:
Processor,RAM,ROM

With Software

It takes some inputs from the user like wash cycle, type of clothes, extra soaking and rinsing,
spin rpm, etc., performs the necessary actions as per the instructions and finishes washing and
drying the clothes. If no new instructions are given for the next wash, then the washing machines
repeats the same set of tasks as the previous wash.

Embedded Systems can not only be stand-alone devices like Washing Machines but also be a
part of a much larger system. An example for this is a Car. A modern day Car has several

57| Page

individual embedded systems that perform their specific tasks with the aim of making a smooth
and safe journey.

Some of the embedded systems in a Car are Anti-lock Braking System (ABS), Temperature
Monitoring System, Automatic Climate Control, Tire Pressure Monitoring System, Engine Oil
Level Monitor, etc.

2.2.3. Programming Embedded Systems
As mentioned earlier, Embedded Systems consists of both Hardware and : are. If we
consider a simple Embedded System, the main Hardware Module is the Processor. rocessor

Embedded Software or Program allow Hardwa mon?exter al events (Inputs / Sensors)
uring this process, the program for an

Hardware (usually the processor) su
Handling, and 1/O Ports etc.

(low-level Progr
Basic, JAVA Script

ge), C, C++, JAVA (high-level programming languages), Visual
plication level Programming Languages), etc.

In the pro ng a better embedded system, the programming of the system plays a vital
role and hence, the selection of the Programming Language is very important.

2.2.4. Factors for Selecting the Programming Language
The following are few factors that are to be considered while selecting the Programming

Language for the development of Embedded Systems.

Size: The memory that the program occupies is very important as Embedded Processors
like Microcontrollers have a very limited amount of ROM (Program Memory).

58| Page

Speed: The programs must be very fast i.e., they must run as fast as possible. The
hardware should not be slowed down due to a slow running software.

Portability: The same program can be compiled for different processors.
Ease of Implementation

Ease of Maintenance

Readability

Earlier Embedded Systems were developed mainly using Assembly Language. Even though
Assembly Language is closest to the actual machine code instructions and produces small size
hex files, the lack of portability and high amount of resources (time and man po spent on
developing the code, made the Assembly Language difficult to work with

There are other high-level programming languages that offered thezabove
none were close to C Programming Language. Some of the benefi using
main Programming Language:

ad features but
abedded C as the

Significantly easy to write code in C

Consumes less time when compared to Assembly

tes) is Mery simple

Make use of library functions to redu ity of the main code

Embedded System and its RealkT'ime Applications. Focuses on different topics like What
is an Embedded Sys eal Time Applications of Embedded Systems,
What is the Future o

mer'electronics like Digital Cameras, DVD Players to high end and
e Flight Controllers and Missile Guidance Systems, embedded

esent and became an important part of our life.

Another important concept we are hearing these days is Real — Time Systems. In a real
time system, Real Time Computing takes place, where a computer (an Embedded

System) must generate response to events within certain time limits.

Before going in to the details of Real Time Applications of Embedded Systems, we will
first see what an Embedded System is, what is a real time system and what is real time

operating system.

59| Page

DVD Players
Industrial Robofts GPS Receivers Digital Cameras -

ks EMbedded Systems

Wireless Routers —_— MP3 Players

o CF o
Set fop Boxes Gaming Consoles Photocopiers Microwave Ovens

2.2.6. Components of Embedded System 4

An Embedded System consists of four main compgnents. are the Processor
(Microprocessor or Microcontroller), Memory (RAM and , Peripherals (Input and Output)
and Software (main program).

Processor: The heart of an Embedded System ig/the Processor. Based on the functionality of the
system, the processor can be anything li urpose Processor, a single purpose

processor, an Application Specific Proce ocontrgller or an FPGA.
ROM. Memory in an Embedded System (ROM; to/be specific) stores the main program and

RAM stores the program varia

Embedded System mus
Input / Output Ports, Co ication Interfaces, Timers and Counters, etc.

of a Microcaontroller as the main processor. With the help of a Microcontroller, the processor,
memory and few peripherals will be integrated in to a single device.

2.2.7. Introduction to Embedded C Programming Language

Before going in to the details of Embedded C Programming Language and basics of Embedded
C Program, we will first talk about the C Programming Language.

60| Page

The C Programming Language became so popular that it is used in a wide range of applications
ranging from Embedded Systems to Super Computers.

Embedded C Programming Language, which is widely used in the development of Embedded
Systems, is an extension of C Program Language. The Embedded C Programming Language
uses the same syntax and semantics of the C Programming Language like main function,
declaration of datatypes, defining variables, loops, functions, statements, etc.

The extension in Embedded C from standard C Programming Language inclu Hardware
Addressing, fixed point arithmetic operations, accessing address spaces, etc

2.2.7.1. Difference between C and Embedded C

There is actually not much difference between C and Embedded C/apart fro tensions and
the operating environment. Both C and Embedded C programming aréelSO Standards that have
almost same syntax, datatypes, functions, etc.

Embedded C is basically an extension to the Standard C Program Language with additional
features like Addressing 1/0, multiple memory a fixed?point arithmetic, etc.

C Programming Language is generally ing desktop applications, whereas
Embedded C is used in the developme i based applications.

A Keyword is a special wor

is a software that is used to ram written in C to Machine Code). For example, if we
take the Keil’s Cx51 i lar C Compiler for 8051 based Microcontrollers) the
following are some of th
bit
shit
sfr
S
e 3
The following tablelists out all the keywords associated with the Cx51 C Compiler.
at_ alien bdata
bit code compact
data far idata
interrupt large pdata
_priority reentrant shit
sfr sfr16 small
- task using xdata

61| Page

Data Types in Embedded C

Data Types in C Programming Language (or any programming language for that matter) help us
declaring variables in the program. There are many data types in C Programming Language like
signed int, unsigned int, signed char, unsigned char, float, double, etc. In addition to these there
few more data types in Embedded C.

The following are the extra data types in Embedded C associated with the Keil’s €x51 Compiler.

bit

shit

sfr

sfrl6
The following table shows some of the data types in Cx51 Compilealong thelf ranges.
Data Type Bits (Bytes) Range
bit 1 0 or 1 (bit addressable gart of RA
signed int 16 (2) -32768 to +32767
unsigned int 16 (2) 0 to 65535
signed char 8 (1) -128 to +127M /
unsigned 8 (1) 0to 255
float 32 (4) to £3.402823E+38
double 32 (4) 0 +3/402823E+38
shit 1 le part of RAM)
sfr 8 (1) M Addregses (80h to FFh)
sfr16 16 (2)

Basic Structure of an
The next thing to unde
Template of Embedded
Program is writt
The following part shgws t

edded C Program (Template for Embedded C Program)
in asics of Embedded C Program is the basic structure or
. This will help us in understanding how an Embedded C

basic structure of an Embedded C Program.

ine Comments.......... Denoted using /*...... */
Single Line Comments.......... Denoted using //
reprocessor Directives.......... #include<...> or #define

o Global Variables.......... Accessible anywhere in the program

o Function Declarations.......... Declaring Function

o Main Function.......... Main Function, execution begins here
{
Local Variables Variables confined to main function
Function Calls Calling other Functions

62|Page

Infinite Loop Like while(1) or for(;;)
Statements

o Function Definitions.......... Defining the Functions
{
Local Variables Local Variables confined to this Function
Statements

Before seeing an example with respect to 8051 Microcontroller, will TIES he different
components in the above structure.

2.2.7.3. Different Components of an Embedded C Program

Comments: Comments are readable text that are written to help he reader) understand the
code easily. They are ignored by the compiler apd“do noty up any memory in the final code
(after compilation).

There are two ways you can write co
the other is multiline comments denoted by /*....*/.

hessingle line comments denoted by // and

Preprocessor Directive: reproce isective in Embedded C is an indication to the
compiler that it must look.in i r symbols that are not defined in the program.

Global Variables: Glo
can be accessed

riab s the name suggests, are Global to the program i.e., they
gram.

Local Variables: ariables, in contrast to Global Variables, are confined to their
Main Fun : Every C or Embedded C Program has one main function, from where the
execution of the program begins.

Basic Embedded C Program

Till now, we have seen a few Basics of Embedded C Program like difference between C and

Embedded C, basic structure or template of an Embedded C Program and different components
of the Embedded C Program.

63|Page

Example of Embedded C Program

The following image shows the circuit diagram for the example circuit. It contains an 8051 based
Microcontroller (AT89S52) along with its basic components (like RESET Circuit, Oscillator
Circuit, etc.) and components for blinking LEDs (LEDs and Resistors).

8xLED

+5V
Push Button +
u 10uFMBV o — _—9
ad
10K T § 7 8x 1KQ
s RST 9 P1.0M2 — y
I 19 = P1.1/T2EX 3 —
— | ey XTALA P12 [— l_
- a3pF "| 11.0592MHz g: 3 5
E—o = pis|-S—foses—— |
33pF P16 _|8 98— e—
— [o e P1.7 [——{2 888}
|1 ' T [l 10
+5V 0] PSEN P3.0/RXD XS
3] ALE P3.1TXD 7 — —
09 EA P3.2/INTO 3
10K P3.3/INT1 —
P3.4/T0 "—jl‘é‘
P3.5M1 -—1—5
P3.8WR 7
P3.7(RD p—
£ Pooco P20iA8 2%
7] PO.1/AD1 P2.1/A9 53 L
6] P0.2/AD2 P2.2/A10 BA —_
T P0.3/AD3 P2.3/A11 BS -
T PO.4/AD4 P2.4/A12 55
5] PO.5/ADS P2.5/A13 57
S5 PO.6IADS a P2E/AN4 o
== PO.7/IAD7 o} P2.7/A15 ==
AT89S52 |8

_—

dded\C _PRrogram for the above circuit, we will use the Keil C
t of the Keil uVision IDE. The program is shown below.

In order to write the
Compiler. This compiler

essor Directive
unction Declaration
Function

#include<reg51.h>%, Pre
void delayint); // De

P1 = 0x00;
[* Making PORT1 pins LOW. All the LEDs are OFF.
* (P1 is PORTL, as defined in reg51.h) */

while(1) // infinite loop

{

P1 = OxFF; // Making PORT1 Pins HIGH i.e. LEDs are ON.
delay(1000);

64|Page

[* Calling Delay function with Function parameter as 1000.
* This will cause a delay of 1000mS i.e. 1 second */
P1 = 0x00; // Making PORT1 Pins LOW i.e. LEDs are OFF.

delay(1000);

}

}

void delay (int d) // Delay Function Definition

{
unsigned int i=0; // Local Variable. Accessible only in this fupction.
[* This following step is responsible for causing delay of 10
* (or as per the value entered while calling the delay func
for(; d>0; d-)
{
for(i=250; i>0; i —-);
for(i=248; i>0; i—-);
}

}

LED is a semiconductor device use
purposes. It is used widely as indicat
stages.

devices, mostly used for indication

during test for’Checking the validity of results at different

It is very cheap and easily avai ariety of shape, color and size. The LEDs are also used
in designing of messagef@isplay boards and traffic control signal lights etc.

Consider the
Microcontroller

re based simulation of LED blinking using 8051

65|Page

AEES |

Lo
e | EEEE.
SRS s
! X1 =
EExEmn L
TR
T c2 [
s ||
7 1
e TR

j
e
bl

i £
T3 |
.i 3
8 |
i
ol =D
RS 2
(?E-’T‘.
In above Proteus based simulation the térfaced to the PORTO of the 8051

microcontroller.

Let's see the Embedded C Program for generating the LED output sequence as shown
below:

00000001

00000.

P0=0x01;

b=P0;
for(l-0;1<3000;1++);
for(k=0;k<8;k++)

{
b=b<<1;

66| Page

PO=b;

¥
¥

Consider the Embedded C Program for generating the LED output sequence as shown
below is:-

00000001

00000011

00000111.....

...Andsoonupto 11111111.

#include<reg51.h>

void main()

{
unsigned int i;
unsigned char j,b;

while(1) /

{

P0=0x01;

b=P0;
for(j-0;j<3000;j++);
for(j=0;j<8;j++)

}

Displaying egment Display using 8051 Microcontroller

Electronic'displa ¥d for displaying alphanumeric character is known as 7-Segment display it
is used in many systems for displaying the information.

It is constructed using eight LEDs which are connected in sequential way so as to display digits
from 0 to 9, when certain combinations of LEDs are switched on. It displays only one digit at a
time.

Consider the Proteus software based simulation of displaying number on 7-segment display
using 8051 microcontroller is:-

67| Page

U1

X1 12 b xTaLt PO VADO
e CRYSTAL PO.1/ADY

o
PO 2002
I—J-ﬁ— XTAL2 PO WADG 2
PO AADS 22
PO S/ADS |t
- POL/ALS ._'%
RST PO 7/AD7
P2 00A [EAL
P21180 2
P22/A10

2?.; FEEN P2 2A11 {?;

P2AAI2 P~

sl gF P2 aiA13 A2

P2 6/A14 i

P2 715 il

= pio PIORXD i
L] PIATXD P
R1 i P12 PI2ANTO =12
106 — Pta P3IANTY L3ES
TEA -1 PRATO it
S pis pa T i
<= p1s L
L] P2 7RD

= ATEOCHT

Consider the program for displaying the number from "0 to 7-seg’ment display is:- 10s
#include<reg51.h>

shit a= P3"0; /
shit x= P3"1;
sbit y= P3"2;
shit z= P3"3;
void main()
{
unsigned char m[10]#{0?40,0xF9; ,0?30,0719,0?12,0?02,0xF8,0xE00,0710};
unsigned int i,j;
a=x=y=z=1,
while(1)
{

=m[i];
for(j=0;j<60000;j++);
}
}
Consider the program for displaying numbers from 00 to 10" on a 7segment display is:-
#include<reg51.h>
shit x= P3"0;
shit y= P31,
void display1();

68| Page

void display2();

void delay();

void main()

{
unsigned char m[10]={0?40,0xF9,0724,0?30,0719,0?12,0?02,0xF8,0xE00,0?10};
unsigned int i,j;

ds1=ds2=0;
while(1)
{
for(i=0,i<20;i++)
displayl();
display2();
}
}
void displayl()
{
x=1,
y=0;
P2=m[ds1]; /
delay();
x=1,
y=0;
P2=m[ds1];
delay();
}
void display2()
{
dsl++;
ds1=ds2=0;
}
}
}
void delay()
{

unsigned int k;

69|Page

for(k=0;k<30000;k++);
¥

2.3. RTOS (Real-Time Operating Systems for Embedded Developers)

Embedded developers are often accustomed to bare metal programming or have reservations
towards using an RTOS. Here’s what they are, and why you should consider using one. Today’s
product development cycles are becoming increasingly complex. With available development
time shrinking yet the required feature set expanding, busy developers need to find ways of
doing more in less time. It can often make sense to use a real-time operating s (RTOS) to
gain efficiencies in task management and resource sharing.

2.3.1. What is an RTOS?
Simply put, an RTOS is a piece of software designed to efficient|,

t to When they will be processed,
g the OS to be responsive is more
important than handling underlying taskss On nd, an RTOS' goal is fast and more
deterministic reaction.

Developers used to OS’s such asgaWindows jor Linux will be quite familiar with the
characteristics of an embedd S. esigned to run in systems with limited memory,
and to operate indefinitel ed to be reset.

Because an RTOS is des d to events quickly and perform under heavy loads, it can
be slower at bi ed to another OS.

The time-critieality of embedded systems vary from soft-real time washing machine control
systems through hard-real time aircraft safety systems. In situations like the latter, the
fundamental demand to meet real-time requirements can only be made if the OS scheduler’s
behavior can be accurately predicted.

Many operating systems give the impression of executing multiple programs at once, but this

multi-tasking is something of an illusion. A single processor core can only run a single thread of
execution at any one time. An operating system’s scheduler decides which program, or thread, to

70| Page

run when. By rapidly switching between threads, it provides the illusion of simultaneous
multitasking.

The flexibility of an RTOS scheduler enables a broad approach to process priorities, although an
RTOS is more commonly focused on a very narrow set of applications. An RTOS scheduler
should give minimal interrupt latency and minimal thread switching overhead. This is what
makes an RTOS so relevant for time-critical embedded systems.

2.3.3. The use of RTOS in embedded designs

Many embedded programmers shy away from using an RTOS because th t it adds
too much complexity to their application, or it is simply unknown territ@ry. RTOS typically
requires anything up to 5% of the CPU’s resources to perform its duties. 1 ete will always
be some resource penalties, an RTOS can make up for it in areas s implified’determinism,
ease of use though HW abstraction, reduced development time and ea I

Using an RTOS means you can run multiple tasks con ringing in the basic

2.3.4. Introducing the Zephyr RTOS
There are numerous RTOS solutions o . opers in the Nordic world are focused

The modular Zephyr RTOS itectures, so developers are able to easily tailor
a solution to meet their need

0S): Components, Types, Examples
(RTOS) is an operating system intended to serve real time

It is time-bQund system that can be defined as fixed time constraints. In this type of system,
processing must be done inside the specified constraints. Otherwise, the system will fail.

2.3.5. Why use an RTOS?
Here are important reasons for using RTOS:

It offers priority-based scheduling, which allows you to separate analytical processing
from non-critical processing.

The Real time OS provides API functions that allow cleaner and smaller application
code.

71| Page

Abstracting timing dependencies and the task-based design results in fewer
interdependencies between modules.

RTOS offers modular task-based development, which allows modular task-based testing.
The task-based API encourages modular development as a task, will typically have a
clearly defined role. It allows designers/teams to work independently on their parts of the
project.

An RTOS is event-driven with no time wastage on processing time for the event which is
not occur

2.3.6. Terms used in RTOS
Here, are essential terms used in RTOS:

Task — A set of related tasks that are jointly able to provide some
Job — A job is a small piece of work that can be assigned to,a proce
may not require resources.
Release time of a job —It’s a time of a job at which job becom
Execution time of a job: It is time taken by job to fi [
Deadline of a job: It’s time by which a job should finis
Processors: They are also known as active resources.
execution of a job.

Maximum It is the allowable respons
Response time of a job: It is a len
instant finishes.

Absolute deadline: This is thefrelative dead

ctionality.
dthat may or

eady for execution.

hich also includes its release time.

2.3.7. Components of RTOS

Components of Real Time Operating System

Here, are important Component of RTOS

72| Page

The Scheduler: This component of RTOS tells that in which order, the tasks can be executed
which is generally based on the priority.

Symmetric Multiprocessing (SMP): It is a number of multiple different tasks that can be
handled by the RTOS so that parallel processing can be done.

Function Library: It is an important element of RTOS that acts as an interface that helps you to
connect kernel and application code. This application allows you to send the_requests to the
Kernel using a function library so that the application can give the desired results:

Memory Management: this element is needed in the system to allg emory t0”every
program, which is the most important element of the RTOS.

Fast dispatch latency: It is an interval between the termination of th k that can be identified
by the OS and the actual time taken by the thread, which igfin the read ue, that has started
processing.
User-defined data objects and classes: RTOS system makes u
like C or C++, which should be organized accordifigrto theV)erati n.

programming languages

2.3.8. Features of RTOS

Here are important features of RTOS:
Occupy very less memory
Consume fewer resource
Response times are hi
Unpredictable enviro
The Kernel savesgthe
run next.

€ €

Factors for selec

Error-free: RTOS systems are error-free. Therefore, there is no chance of getting an
error while performing the task.

Embedded system usage: Programs of RTOS are of small size. So we widely use RTOS
for embedded systems.

Maximum Consumption: we can achieve maximum Consumption with the help of
RTOS.

73| Page

Task shifting: Shifting time of the tasks is very less.
Unique features: A good RTS should be capable, and it has some extra features like how
it operates to execute a command, efficient protection of the memory of the system, etc.

24/7 performance: RTOS is ideal for those applications which require to run 24/7.

2.3.9. Difference between in GPOS and RTOS
Here are important differences between GPOS and RTOS:

General-Purpose Operating System
(GPOS)

Real-Time Operating System (RTO

It used for desktop PC and laptop.

It is only applied to the embedded appllc

Process-based Scheduling.

Time-based scheduling used li
scheduling.

Interrupt latency is not considered as
important as in RTOS.

Interrupt lag is minimal
microseconds. '

No priority inversion mechanism is
present in the system.

Kernel’s operation may or may not be
preempted.

Priority inversion remain unnoticed

2.3.10. Types of Real Time Operatin

The real-time operating systems can

Time OS
RTOS

1. Hard Real-Time operating system:

Soft Real Firm Real-
Time OS time OS
RTOS RTOS

These operating systems guarantee that critical tasks be completed within a range of time.
For example, a robot is hired to weld a car body. If the robot welds too early or too late, the
car cannot be sold, so it is a hard real-time system that requires complete car welding by

74| Page

2.3.11. Advantages of Real Time O
The advantages of real-time operatin
1.

robot hardly on the time., scientific experiments, medical imaging systems, industrial control
systems, weapon systems, robots, air traffic control systems, etc.

Soft real-time operating system:

This operating system provides some relaxation in the time limit.
For example — Multimedia systems, digital audio systems etc. Explicit, programmer-defined
and controlled processes are encountered in real-time systems. A separate process is changed
with handling a single external event. The process is activated upon occurrence of the related
event signalled by an interrupt.

Multitasking operation is accomplished by scheduling processes for
of each other. Each process is assigned a certain level of priority the
relative importance of the event that it services. The processQp, i
priority processes. This type of schedule, called, priority-based pr
by real-time systems.

tive scheduling is used

Firm Real-time Operating System:
RTOS of this type have to follow deadlines
deadline can have unintended consequeanCes, i
product. Example: Multimedia applications.

ell. y)ite of its small impact, missing a
uding a reduction in the quality of the

Maximum consumptio

Maximum utilization of dewi ystems. Thus more output from all the resources.

Task Shifting

Time assig in these systems is very less. For example, in older systems,

it takes abou
3 microseconds.

conds. Shifting one task to another and in the latest systems, it takes
Focus tion —

Focus oR running applications and less importance to applications that are in the queue.
Real-Time Operating System In Embedded System —

Since the size of programs is small, RTOS can also be embedded systems like in transport

and others.

Error Free —
These types of systems are error-free.

75| Page

6. Memory Allocation —
Memory allocation is best managed in these types of systems.

2.3.12. Disadvantages of Real Time Operating System (RTOS)
The disadvantages of real-time operating systems are as follows-

1. Limited Tasks —
Very few tasks run simultaneously, and their concentration is very less on few_ applications to
avoid errors.

2. Use Heavy System Resources —
Sometimes the system resources are not so good and they are expensivesa

3. Complex Algorithms —
The algorithms are very complex and difficult for the degigner to writ

4. Device Driver And Interrupt signals —
It needs specific device drivers and interrupt

als to ?pond arliest to interrupts.

5. Thread Priority —

It is not good to set thread priority very less prone to switching tasks.

6. Minimum Switching — RT@S p al task switching.

2.3.13. Comparison of Reg I-Time operating systems:
Regular Real-Time OS (RTOS)
Complex Simple
B Guaranteed response
Fairne Strict Timing constraints

Bandwidth Minimum and maximum limits
Unknown components Components are known
Unpredictable behavior Predictable behavior
Plug and play RTOS is upgradeable

2.4. Multiple Tasks And Multiple Processes

2.4.1. Tasks and Processes

76 |Page

Many (if not most) embedded computing systems do more than one thing that is, the
environment can cause mode changes that in turn cause the embedded system to behave quite
differently. For example, when designing a telephone answering machine,

We can define recording a phone call and operating the user’s control panel as distinct tasks,
because they perform logically distinct operations and they must be performed at very different
rates. These different tasks are part of the system’s functionality, but that application-level
organization of functionality is often reflected in the structure of the program as well.

RTOS DroCesses run
often called threads.
input to the box is

provides a simple example of rate control problems. A control panel
ides an example of a different type of rate control problem,
the asynchr@nous input.

77 |Page

’ \

Uncompressed Serial line // ' Serial line Compressed
, | \venaiine

" -
data B Compressor s data
// \\
/ \
/ A\
/ \
/ \ \
/ / \ \
/ f \ \
/ ¢ \ \
/ v v \
/ / 1 \
/ ! \
/ / \ \
7 I
—=| Character = — Bit queue 1
.:
I
Compression table

7
The control panel of the compression box m ple, include a compression mode button
that disables or enables compression, so is passed through unchanged when

mode button the button may be depr sly relative to the arrival of characters for
compression.

2.4.2. Multirate Systems
Implementing code that gati

s, and cell phones. In all these systems, certain operations
each operation is executed at its own rate.

applicatio Ing requirements on a set of processes strongly influence the type of
scheduling that is appropriate. A scheduling policy must define the timing requirements that it
uses to determine whether a schedule is valid. Before studying scheduling proper, we outline the

types of process timing requirements that are useful in embedded system design.

Figure illustrates different ways in which we can define two important requirements on
processes: release time and deadline.

The release time is the time at which the process becomes ready to execute; this is not
necessarily the time at which it actually takes control of the CPU and starts to run. An aperiodic

78| Page

process is by definition initiated by an event, such as external data arriving or data computed by
another process.

Deadline

]
| Pl | T
.
l\ Release time Time

Aperiodic process

Deadline

=
| "]
|’
-

l T Release time
Rl

Time

Period
Perlodic process initiated at start of period
Deadline
—
| T]

oo

] I‘\‘ Release time Time

s =

Period

Periodic process released by event

The release time is generally measurgd from that event, although the system may want to make
the process ready at some interval aft@fthe event itself. For a periodically executed process, there
are two common possibilitie

In simpler systems, t
sophisticated systems,
release time at t

rocess may:become ready at the beginning of the period. More

reference. irie for a periodic process may in general occur at some time other than the
end of the

Rate requirements are also fairly common. A rate requirement specifies how quickly processes
must be initiated.

The period of a process is the time between successive executions. For example, the period of a
digital filter is defined by the time interval between successive input samples.

79| Page

The process’s rate is the inverse of its period. In a multirate system, each process executes at its
own distinct rate.

The most common case for periodic processes is for the initiation interval to be equal to the
period. However, pipelined execution of processes allows the initiation interval to be less than
the period. Figure illustrates process execution in a system with four CPUSs.

CPU1 Pl; Pl 4

CPU 2) P Pl,.s

CPU 3 Pl Pl;.g

CPU 4 Pl s Pl;, -

>
Time
7

CPU Metrics
We also need some terminology the process actually executes.
The initiation time is the time at tually starts executing on the CPU.

The most basic measure of gvork Is the of CPU time expended by a process. The CPU
time of process i is callegr Ci he CPU time is not equal to the completion time minus
initiation time; several ay interrupt execution. The total CPU time consumed
by a set of processes is

U=CPU time for useful work/total available CPU time

Utilization is the ratio of the CPU time that is being used for useful computations to the total
available CPU time. This ratio ranges between 0 and 1, with 1 meaning that all of the available
CPU time is being used for system purposes. The utilization is often expressed as a percentage. If
we measure the total execution time of all processes over an interval of time t, then the CPU
utilization is

U=Th.

80|Page

2.4.4. Multiple Tasks and Multiple Processes

"Most embedded systems require functionality and timing that is too complex to body in
a single program. We break the system in to multiple tasks in order to manage when things
happen. In this section we will develop the basic abstractions that will be manipulated by the
RTOS to build multirate systems.

To understand why these parathion of an application in to tasks may be reflected in the
program structure, consider how we would build a stand-alone compression
compression algorithm,this device is connected to serial ports on both ends

compress data being sent to a modem. The program’s need to reg and S
rates—for example, the program may emit 2 bits for the first byte andfthen 7 bits for the second

; @ more elegant solution
is to create a queue of out put bits, with those bi i ?/ed from the queue and sent to the

a Clean data structure that simplifies the
control structure of the code, we must alsg en rocess the inputs and outputs at the

characters, we may drop an input . ing timing problems is a more challenging
problem.

program. Sampling the button’s state too slowly can cause the machine to miss a button
depression entirely, but sampling it too frequently and duplicating a data value can cause the
machine to in correctly compress data.

One solution is to introduce a counter in to the main compression loop, so that a subroutine to

check the input button is called once every times the compression loop is executed. But this
solution does not work when either the compression loop or the button-handling routine has

8l|Page

highly variable execution times—if the execution time of either varies significantly, it will cause
the other to execute later than expected, possibly causing data to be lost. We need to be able to
keep track of these two different tasks separately, applying different timing requirements to each.

This is the sort of control that processes allow. The above two examples illustrate how
requirements on timing and execution rate can create major problems in programming. When
code is written to satisfy several different timing requirements at once, the control structures
necessary to get any sort of solution become very complex very quickly. Worse, such complex
control is usually quite difficult to verify for either functional or timing properti

2.4.5. Multi rate Systems

Implementing code that satisfies timing requirements is even
multiple rates of computation must be handled. Multi rate embedd;
common, including auto mobile engines, printers, and cell phones.l
operations must be executed periodically, and each oper=ation is ex
Application Example6.1 describes why auto mobile engines requike multi

complex when

ate control.

2.4.6. Timing Requirements on Processes
Processes can have several different

scheduling that is appropriate. A sch
uses to determine whether a schedulefis valid. Before’Studying scheduling proper, we outline the

illustrates different ways in
What happens when a pro
depend on the applicat
where as a missed dea
system can be designed
systems may try
special safety mode.

the results €an be catastrophic in an auto mo- tive control system,
in a Imedia system may cause an audio or video glitch. The

pensatory measures such as approximating data or switching in to a
stems for which safety is not as important may take simple measures to

avoid pr bad déta, such as inserting silence in a phone line, or may completely ignore
the failur e modules are functionally correct, their timing improper behavior can
introduce major execution errors. Application Example6.2 describes a timing problem in space
shuttle soft that caused the delay of the first launch of the shuttle. We need a basic measure

of the efficiency with which we use the CPU. The simplest and most direct measure is
utilization:

Utilization is the ratio of the CPU time that is being used for useful computations to the total

available CPUtime. This ratio ranges between 0 and 1, with 1 meaning that all of the available
CPU time is being used for system purposes. The utilization is often expressed as a percentage. If

82|Page

we measure the total execution time of all processes over an interval of time t, then the CPU
utilization is U/T

2.4.7. Process State and Scheduling

The first job of the OS is to determine that process runs next. The work of choosing the
order of running processes is known as scheduling. The OS considers a process to be in one of
three basic scheduling states

Executing

ats data , CPU ready

Ready N

Ll

(N
Preempted N Waliting]
] N
Received Data

J

xec%n for the processes in a
eneral, we must construct a schedule to
e sets of processes as unschedulable
e/Key metrics in evaluating a scheduling
ization be no more than 100% since we

Schedulability means whether there exists a
system that satisfies all their timing require
show schedulability, but in some cases weycan
using some very simple tests. Utilization is one
policy. Our most basic require- ment is that CP
can’t use the CPU more than100% o

When we evaluate the utiliz
all possible combinatio
must be considered is th
the processes.

CPU, we generally do so over a finite period that covers
f process executions. For periodic processes, the length of time that
iod, which is the least-common multiple of the periods of all

W nd a programming technique that allows us to run periodic processes,
ideally at different rates. For the moment, let’s think of a process as a subroutine; we will call the
mp1(), p2(), &tc. for simplicity. Our goal is to run these subroutines at rates determined by the
system

designer. Here is a very simple program that runs our process subroutines repeatedly: A timer is
a much more reliable way to control execution of the loop. We would probably use the timer to
generate periodic interrupts. Let’s assume for the moment that the pall() function is called by the
timer’s interrupt handler. Then this code will execute each process once after a timer interrupt:

83|Page

voidpall()
{
p1();
p2();
}
But what happens when a process runs too long? The timer’s interrupt will cause the CPU’s
interrupt system to mask its interrupts, so the interrupt will not occur until after the pall() routine
returns. As a result, the next iteration will start late. This is a serious problem,
to wait for further refinements before we can fix it.

Our next problem is to execute different processes at different rates. If we everal timers,
we can set each timer to a different rate. We could then use a funcfi@g to co he processes
that run at that rate:

voidpA()

{
[*processesthatrunatrate A*/
p1(); /
P30);

}

void pB()

{

[*processesthatrunatrateB*/

}

This solution allows us
However, whe

ecu ocesses at rates that are simple multiples of each other.
lated by a simple ratio, the counting process becomes more

ill limited in capability and prone to bugs. To improve both the
of our systems, we need to invent the RTOS.

other program which is running on that OS Program, it manages the all other application
programs. or in other words, we can say that the OS is an interface between the user and
computer hardware.

we will learn about what is Context switching in an Operating System and see how it works also
understands the triggers of context switching and an overview of the Operating System.

84|Page

Context Switch

Context switching in an operating system involves saving the context or state of a running
process so that it can be restored later, and then loading the context or state of another. process
and run it.

Context Switching refers to the process/method used by the system to change the process from
one state to another using the CPUs present in the system to perform its job.

Example — Suppose in the OS there (N) numbers of processes are stored in &
Block(PCB). like The process is running using the CPU to do its job. Whil

context while switching between
2. Context switching enables all pr
store the status of the syste
where there is a conflict
3. Context switching enabl
store the status of t
where there is a con
4. Context switehi

3. User/Kernel switch

Interrupts: When a CPU requests that data be read from a disc, if any interruptions occur,
context switching automatically switches to a component of the hardware that can handle the
interruptions more quickly.

85| Page

Multitasking: The ability for a process to be switched from the CPU so that another process can
run is known as context switching. When a process is switched, the previous state is retained so
that the process can continue running at the same spot in the system.

Kernel/User Switch: This trigger is used when the OS needed to switch between the user mode
and kernel mode.

When switching between user mode and kernel/user mode is necessary, operating systems use
the kernel/user switch.

2.5.3. Process Control Block

computer to store all information about a process. It is also called the
a process is created (started or installed), the operating syst reates a p

2.5.3.1. State Diagram of Context Switching
Pl V

Process p0 Operating System Process p1
Interrupt or system call

e | s
executing {
save state into PCB0 l
A I | Idie
' reload state from PCB1 l
g T — — — — — 4 e;,;ecuzmg
Idie Interrupt or System Call
B— _I—_’:_;\
! (save state into PCB1 l \l
/ I . I Idie
executing) I f
| reioad state from PCB0O ,
\ — — S

2.5.4. Working Process Context Switching
So the context switching of two processes, the priority-based process occurs in the ready queue
of the process control block. These are the following steps.

8 |Page

The state of the current process must be saved for rescheduling.

The process state contains records, credentials, and operating system-specific information
stored on the PCB or switch.

The PCB can be stored in a single layer in kernel memory or in a custom OS file.

A handle has been added to the PCB to have the system ready to run.

The operating system aborts the execution of the current process and selects a process from
the waiting list by tuning its PCB.

Load the PCB’s program counter and continue execution in the selected process.
Process/thread values can affect which processes are selected from the queue, this can be
important. /

2.6. Priority Scheduling Algorithm: Preemptive, Non-Preen
What is Priority Scheduling?
Priority Scheduling is a method of scheduling processes that i
algorithm, the scheduler selects the tasks to work as per the priority.
The processes with higher priority should be carried out fi
are carried out on a round-robin or FCFS basis. Priority depen
time requirements, etc.

upon memory requirements,

2.6.1. Types of Priority Scheduling
Priority scheduling divided into two mai

2.6.1.1. Preemptive Scheduling
In Preemptive Scheduling, th ssigned with their priorities. Sometimes it is
important to run a task with @ higherpri fore another lower priority task, even if the lower
priority task is still running. riority task holds for some time and resumes when the

In this type of scheduli thod, the CPU has been allocated to a specific process. The process
that kee will release the CPU either by switching context or terminating. It is
the only n be used for various hardware platforms. That’s because it doesn’t need

2.6.2. Characteristics of Priority Scheduling
A CPU algorithm that schedules processes based on priority.
It used in Operating systems for performing batch processes.
If two jobs having the same priority are READY, it works on a FIRST COME, FIRST
SERVED basis.

87|Page

In priority scheduling, a number is assigned to each process that indicates its priority

level.

Lower the number, higher is the priority.
In this type of scheduling algorithm, if a newer process arrives, that is having a higher
priority than the currently running process, then the currently running process is

preempted.

2.6.3. Example of Priority Scheduling

Consider following five processes P1 to P5. Each process has its unique priority, Burst time, and

arrival time.

Process Priority Burst time Arriv,
P1 1 4 0

P2 2 3

P3 1 7 6

P4 3 4 11

P5 2 2 ' 12

Step 0) At time=0, Process P1 and P2 arrive. P1 has higher pri@sity than P2. The execution

begins with process P1, which has burst time 4.\

Timer

0

P1

P2

Which is having higher

Both P1 and P2 arrive at time ZERO

~

priority P1or P2 ?

Step 1) At time=1, no new pﬁcess m ive. EXECution continues with P1.

Timer At time 1, no new process
arrives so we continue
I with P1
P2
P1

(0}

Step 2) At tifme 2, N0 new process arrives, so you can continue with P1. P2 is in the waiting

queue.

88|Page

Timer

At time 2, no new process
arrives so we continue

P> with P1
P1
0
Step 3) At time 3, no new process arrives so you can continue with P1. P2 pr still in the
waiting queue. P
Timer At time 3, no new process
arrives so we continue
P> with P1
P1
0

Step 4) At time 4, P1 has finished its executi&Z 9&«5 egecution.

At time 4, P1 has finished
its processing, so

processor is assigned to P2
P2 NOW.

Timer

P1
0 4
Step 5) At timwroﬁss arrives, so we continue with P2.
Timer At time 5, no new process
arrives so we continue
with P2
P1 P2
o 4

Step 6) At time=6, P3 arrives. P3 is at higher priority (1) compared to P2 having priority (2). P2
is preempted, and P3 begins its execution.

89|Page

Process Priority Burst time Arrival time
P1 1 4 0

P2 2 1 out of 3 pending 0

P3 1 7 6

P4 3 4 11

P5 2 2 12

Timer
P2 is preempted and P3
P3 starts executing
P1 P2 ,
0 4 6

Step 7) At time 7, no-new process arrives, so we continue Ww P2 is in'the waiting queue.

Timer
At time 7, no new process
P arrives, so we continue
with P
P1 P2 P3
0 4 6
Step 8) At time= 8, no ngw Ms, S0 we can continue with P3.
Timer
At time 8, no new process
Ps arrives, so we continue
with P
P1 P2 P3
0 4 6

Step 9) At tite= 9, no new process comes so we can continue with P3.

9 |Page

Timer

9

P2

At time 9, no new process
arrives, so we continue

with P

P1

P2

P3

0

4

6

Step 10) At time interval 10, no new process comes, so we continue with P3

Timer
At time 10, NO New process
arrives, so we continue
P2 '
1 O with P
P1 P2 P3
0 4 6

Step 11) At time=11, P4 arrives with pri

0%3; hasﬁher p'riority, SO it continues its
A

execution.

Process Priority Burst time Arrival time

P1 1 4 5

P2 2 |1 olibof 3 pendifg ~ 0

- 1 TZoutof 7 pending 6

i 3 * - 11

P5 2 5
Timer

Since p3 had higher
11 |
P1 P2 P3
o 4 6

Step 12) Attime=12, P5 arrives. P3 has higher priority, so it continues execution.

91|Page

Timer

Since p3 had higher

P2 P4 Ps priority so it continues
execution

P1 P2 P3

0 4 6
Step 13) At time=13, P3 completes execution. We have P2,P4,P5 in ready queue. and P5
have equal priority. Arrival time of P2 is before P5. So P2 starts executio‘.’\

Process Priority Burst time Arrival time
P1 1 4 0
P2 2 1 out of 3 pending - \
P3 1 7 6
P4 3 4 N1
P5 2 2 12
Timer

Since P2 arrived first so P2

1 : ; P2 P4 Ps is selected for execution

P1 P2 P3

0 4 6 13

Step 14) At time =14, t prOMas finished its execution. P4 and P5 are in the waiting
state. P5 has the Qighest pgior starts execution.

Timer

At time 14, P2 is finished

1 1 P4 Ps with its execution

P1 P2 P3 P2

0 4 6 13
Step 15) At time =15, P5 continues execution.

92|Page

Timer

135 :

P1 P2 P3 P2 Ps5

Step 16) At time= 16, P5 is finished with its execution. P4 is the only proc eft. It starts
execution.

Timer
Py P2 P3 P> Ps | |
Step 17) At time =20, P5 has completed execwv aﬁq no lcess is left.
Timer
P1 P P3 P2 Ps P4
0 4 6 13 14 16 20
Step 18) Let’s late the a waiting time for the above example.
Waiting Time = arrival time + wait time for next burst
Pl=o-
P2=4-0
P3= 6-6=
P4=16-11=

Average Waliting time = (0+11+0+5+2)/5 = 18/5= 3.6

2.6.4. Advantages of priority scheduling
Here, are benefits/pros of using priority scheduling method:
Easy to use scheduling method

Processes are executed on the basis of priority so high priority does not need to wait for
long which saves time

93|Page

This method provides a good mechanism where the relative important of each process
may be precisely defined.
Suitable for applications with fluctuating time and resource requirements.

2.6.5. Disadvantages of priority scheduling
Here, are cons/drawbacks of priority scheduling

2.6.6. Scheduling policies
To meet the needs of various applications, the QNX Neutrino R provides these scheduling

If the system eventually crashes, all low priority processes get lost.

If high priority processes take lots of CPU time, then the lower priority processes may
starve and will be postponed for an indefinite time.

This scheduling algorithm may leave some low priority processes waltmg indefinitely.
A process will be blocked when it is ready to run but has to waiji#fe ecause
some other process is runnmg currently.

algorithms:

FIFO scheduling /
round-robin scheduling
sporadic scheduling

Each thread in the system may run usihg any method.$Fhe methods are effective on a per-thread

basis, not on a global basis for all thr

s and progesses on a node.

eduling policies apply only when two or more
READY (i.e., the threads are directly competing with

94| Page

Running

Ready
queue P 4 m ~a
]ﬁ s A ~
/7 hY
[ol (o ol -" \
A / A\
S N ‘
2 I
,:3 /
/
7/
Blocked P 4
.

Thread A blocks; Thread B runs.

Summary:
Priority scheduling is a method of scheduling proce at is base@’on priority. In this
algorithm, the scheduler selects the tasks to work as per th@ypriority.

In Priority Preemptive Scheduling, the tasks are mostly assi with their priorities.

In Priority Non-preemptive scheduling d the}J has been allocated to a specific
process.

Processes are executed on the basi
long which saves time

priority does not need to wait for

95 |Page

UNIT 11
IOT AND ARDUINO PROGRAMMING

+Introduction to the Concept of 10T Devices

+ 10T Devices Versus Computers \

+ 10T Configurations

+ Introduction to Arduino

+ Basic Components \(\(

+Arduino Progr, ture

+ Types of Arduino d
+ Arduino Toolchain
iC;w‘j

+ Sketches

+ Pins

Outpet From Pins Using Sketches

+ Intfoduction to Arduino Shields

+Integration of Sensors and Actuators with Arduino

9% |Page

3.1. 10T (Internet of Things)

loT stands for Internet of Things, which means accessing and controlling daily usable
equipments and devices using Internet.

3.1.1 What is an Internet of Things (10T)
Our mobile device which contains GPS Tracking, Mobile Gyroscope, Adaptive brightness,
Voice detection, Face detection etc. These components have their own individual features, but
what about if these all communicate with each other to provide a better e
example, the phone brightness is adjusted based on my GPS location or my.gdi

5 to internet
pternet of Things

Connecting everyday things embedded with electronics, software, a
enabling to collect and exchange data without human interaction ¢
(loT).

The term "Things" in the Internet of Things refers to anything
which is accessed or connected through the internet.

—

everything in day to day life

o £ e
-/ Internet |-~ SN o

\
/ A 4 - -
/ o’ ’ o T
N / - < /’ \ ~y
~omime 0 (ol ¥ ! ‘ ‘
) ' ’ \
n flight \
\
Sery 25 I

sensor, net ing{ electronic, cloud messaging etc. to deliver complete systems for the product
Or services. system created by 10T has greater transparency, control, and performance.

As we have a platform such as a cloud that contains all the data through which we connect all the
things around us. For example, a house, where we can connect our home appliances such as air
conditioner, light, etc. through each other and all these things are managed at the same platform.
Since we have a platform, we can connect our car, track its fuel meter, speed level, and also track
the location of the car.

97| Page

SPEED

o ""'.‘ LIMIT
3sh 55 A

If there is a common platform where all these things can connect to each other would be great
because based on my preference, | can set the room temperature. For example, ifal love the room
temperature to to be set at 25 or 26-degree Celsius when | reach back home from ffice, then
according to my car location, my AC would start before 10 minutes I arri ome. THhis can be
done through the Internet of Things (1oT).

3.1.2. How does Internet of Thing (1oT) Work?

The working of 10T is different for different 10T echo syst
concept of there working are similar. The entire working
themselves, such as smartphones, digital watches, electron
communicate with the 10T platform. The platform coIIect\ﬁ

devices and platforms and transfer the most valuéble data applications to devices.

Network

Infrastructure

Cloud loT
Infrastructure Architecture

Gateways

3.1.3. Features of IOT
The most important features of 10T on which it works are connectivity, analyzing, integrating,
active engagement, and many more. Some of them are listed below:

Connectivity: Connectivity refers to establish a proper connection between all the things of 10T
to 10T platform it may be server or cloud. After connecting the 10T devices, it needs a high speed

98| Page

messaging between the devices and cloud to enable reliable, secure and bi-directional
communication.

Analyzing: After connecting all the relevant things, it comes to real-time analyzing the data
collected and use them to build effective business intelligence. If we have a good insight into
data gathered from all these things, then we call our system has a smart system.

Integrating: 10T integrating the various models to improve the user experience as well.
Artificial Intelligence: 10T makes things smart and enhances life through the u
example, if we have a coffee machine whose beans have going to end, then the coffe chine
itself order the coffee beans of your choice from the retailer.

Sensing: The sensor devices used in 10T technologies detect ar; easu hange in the
environment and report on their status. loT technology brings passive networks to active
networks. Without sensors, there could not hold an effective/@gtrue 0T enwizonment.

Active Engagement: IoT makes the connected technology, p t, or services to active
engagement between each other.

Endpoint Management: It is important
otherwise, it makes the complete fail
order the coffee beans when it goes
retailer and we are not present for a few; days, it leads to the failure of the 10T system.

3.1.3.1.
Internet o ilitates the several advantages in day-to-day life in the business sector.
Some of its Benefits are given below:

o Efficient resource utilization: If we know the functionality and the way that how each
device work we definitely increase the efficient resource utilization as well as monitor
natural resources.

o Minimize human effort: As the devices of 10T interact and communicate with each
other and do lot of task for us, then they minimize the human effort.

o Save time: As it reduces the human effort then it definitely saves out time. Time is the
primary factor which can save through loT platform.

99 |Page

	CS3691 EMBEDDED SYSTEMS AND IOT L T P C
	COURSE OBJECTIVES:
	UNIT I 8-BIT EMBEDDED PROCESSOR 8-Bit
	UNIT II EMBEDDED C PROGRAMMING
	UNIT III IOT AND ARDUINO PROGRAMMING
	UNIT IV IOT COMMUNICATION AND OPEN PLATFORMS
	UNIT V APPLICATIONS DEVELOPMENT

	UNIT I
	1.1. 8051 Microcontroller
	1.1.1. What a Microcontroller is?

	1.2. Architecture of 8051 Microcontroller
	• ROM
	• RAM
	1.2.5. 8051 Flag Bits and PSW Register
	1.2.7. Pin diagram of 8051 Microcontroller Introduction :
	Uses of pin diagram of the 8051 microcontroller :
	1.2.8. Characteristics of 8051 Microcontroller

	1.3. 8051 Programming in Assembly Language
	1.3.1. 8051 Programming in Assembly Language
	1.3.2. 8051 Microcontroller Architecture
	1.3.3. 8051 Microcontroller Programs in Assembly Language
	1.3.3.1. Rules of Assembly Language
	Syntax: MUL a,b;
	1.3.4.1. Assembler Directives:
	Syntax:
	Syntax: (1)
	Syntax: (2)

	1.3.4.2. Embedded Systems - Addressing Modes
	Immediate Addressing Mode
	Direct Addressing Mode
	Register Direct Addressing Mode
	Register Indirect Addressing Mode
	Indexed Addressing Mode
	MOVC A, @A+DPTR
	MOVC A, @A+PC
	1.3.4.3. Instruction Set
	Looping in the 8051
	Loop inside a loop
	Example
	Solution:
	Other conditional jumps
	In this instruction the content of register A is checked. If it is zero, it jumps to the target address. For example, look at the following code.
	Example (1)
	JNC (jump if no carry, jumps if CY = 0)

	All conditional jumps are short jumps
	Unconditional jump instructions
	LJMP (long jump)
	SJMP (short jump)

	Calculating the short jump address
	Shifting Operators
	Rotate Right (RR):
	Rotate Left (RL):
	RRC Rotate Right through Carry:
	Syntax:
	RLC Rotate Left through Carry:
	Syntax: (1)
	Basic Embedded C Programs:
	1.3.5. Example Program for LED blinking using with 8051 microcontroller:
	LED programs with 8051 Microcontrller

	1.4. Programming Parallel port
	1.4.3. Addition of two 8-bit numbers in 8051 Microcontroller Using Ports Introduction:
	Issues in Addition of two 8-bit numbers 8051 Microcontroller Using Ports :
	Program:
	Explanation:

	1.5. 8051 Timers
	1.5.1. Introduction to 8051 Timers
	8051 Clock

	1.5.2. 8051 Timer
	1.5.2.1. TMOD register
	Bit 7,3 – GATE:
	1.5.2.2. TCON Register
	1.5.3. 8051 Timer Modes
	Mode 0 (13-bit timer mode)
	Mode1 (16-bit timer mode)
	Mode2 (8-bit auto-reload timer mode)
	Mode 3 of Timer/Counter
	The meaning of gate bit in Timer0 and Timer1 for mode 3 is as follows

	1.6. Serial Port in 8051
	Parallel communication in 8051:
	Serial communication in 8051:
	TxD:
	RxD:
	1.6.1. Modes in serial communication:
	Significance of start and stop bit:
	Mode 2 (9-bit UART communication):
	Mode 3 (9-bit UART communication):
	Mode 0 :
	SCON register:
	SM2:
	REN:
	TB8:
	RB8:
	Ti :
	Ri :

	1.7. 8-Bit Interrupts
	1.7.1. Overview of Interrupt Process Program MCU to react to interrupts
	Enable interrupts from selected peripherals
	Peripheral asserts an interrupt request
	Interrupt occurs
	ISR runs
	Control is returned to the Main program
	1.7.2. Registers Used to Process Interrupts Interrupt Control Register
	Interrupt Enable Registers
	Interrupt Request Registers
	Enabling Interrupts Core Interrupts

	UNIT II EMBEDDED C PROGRAMMING
	2.1. Memory and I/O Interfacing
	2.1.1. Memory Interfacing
	2.1.2. I/O interfacing
	8051 Microcontroller Memory Organization
	Differences between microprocessor and microcontroller
	1.2.3. Types of Computer Architecture
	Von Neumann Architecture
	Harvard Architecture
	1.2.4. 8051 Microcontroller Memory Organization
	1.2.4.1. Program Memory (ROM) of 8051 Microcontroller
	1.2.4.2. Data Memory (RAM) of 8051 Microcontroller
	1.2.5. Interfacing External Memory with 8051 Microcontroller

	2.2. Embedded C Programming with Keil Language
	2.2.1. Embedded System Programming:
	2.2.2. Basics of Embedded C Program
	2.2.2.1. What is an Embedded System?
	2.2.3. Programming Embedded Systems
	2.2.4. Factors for Selecting the Programming Language
	2.2.5. Embedded System and Its Real Time Applications
	2.2.6. Components of Embedded System

	2.2.7. Introduction to Embedded C Programming Language
	2.2.7.1. Difference between C and Embedded C
	2.2.7.2. Keywords in Embedded C
	Data Types in Embedded C

	Basic Structure of an Embedded C Program (Template for Embedded C Program)
	2.2.7.3. Different Components of an Embedded C Program

	Basic Embedded C Program
	Example of Embedded C Program

	2.2.7.4. LED Blinking using 8051 Microcontroller
	Consider the Proteus Software based simulation of LED blinking using 8051 Microcontroller is shown below:-
	Let's see the Embedded C Program for generating the LED output sequence as shown below:
	Consider the Embedded C Program for generating the LED output sequence as shown below is:-
	Consider the Proteus software based simulation of displaying number on 7-segment display using 8051 microcontroller is:-
	Consider the program for displaying numbers from '00 to 10' on a 7segment display is:-
	2.3. RTOS (Real-Time Operating Systems for Embedded Developers)
	2.3.1. What is an RTOS?
	2.3.2. RTOS scheduling
	2.3.3. The use of RTOS in embedded designs
	2.3.4. Introducing the Zephyr RTOS
	2.3.5. Real-time operating system (RTOS): Components, Types, Examples
	2.3.5. Why use an RTOS?
	2.3.6. Terms used in RTOS
	2.3.7. Components of RTOS
	2.3.8. Features of RTOS
	Factors for selecting an RTOS
	2.3.9. Difference between in GPOS and RTOS
	2.3.10. Types of Real Time Operating System (RTOS)
	1. Hard Real-Time operating system:
	2. Soft real-time operating system:
	3. Firm Real-time Operating System:
	2.3.11. Advantages of Real Time Operating System (RTOS)
	1. Maximum consumption
	2. Task Shifting
	3. Focus On Application –
	4. Real-Time Operating System In Embedded System –
	5. Error Free –
	6. Memory Allocation –
	2.3.12. Disadvantages of Real Time Operating System (RTOS)
	1. Limited Tasks –
	2. Use Heavy System Resources –
	3. Complex Algorithms –
	4. Device Driver And Interrupt signals –
	5. Thread Priority –

	2.4. Multiple Tasks And Multiple Processes
	2.4.1. Tasks and Processes
	2.4.2. Multirate Systems
	2.4.3. Timing Requirements on Processes
	CPU Metrics
	2.4.4. Multiple Tasks and Multiple Processes
	2.4.5. Multi rate Systems
	2.4.6. Timing Requirements on Processes
	2.4.7. Process State and Scheduling
	2.4.8. Running Periodic Processes

	2.5. Context Switch in Operating System
	Context Switch
	2.5.1. The Need for Context Switching
	2.5.2. Context Changes as a Trigger
	2.5.3. Process Control Block
	2.5.3.1. State Diagram of Context Switching

	2.6. Priority Scheduling Algorithm: Preemptive, Non-Preemptive
	What is Priority Scheduling?
	2.6.1. Types of Priority Scheduling
	2.6.1.1. Preemptive Scheduling
	2.6.1.2. Non-Preemptive Scheduling
	2.6.2. Characteristics of Priority Scheduling
	2.6.3. Example of Priority Scheduling
	2.6.4. Advantages of priority scheduling
	2.6.5. Disadvantages of priority scheduling
	2.6.6. Scheduling policies
	Summary:

	UNIT III
	3.1. IoT (Internet of Things)
	3.1.1 What is an Internet of Things (IoT)
	3.1.2. How does Internet of Thing (IoT) Work?
	3.1.3. Features of IOT
	Advantages and Disadvantages of (IoT)
	3.1.3.1. Advantages of IoT

